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ABSTRACT. Let k be a perfect field of characteristic p > 0. Let D and
E be two Barsotti–Tate groups over k. We show that for n >> 0, the
dimension dim(HomHomHom(D[pn], E[pn])) is a symmetric isogeneous invariant, i.e.,
it does not change if D and E are interchanged or replaced by Barsotti–Tate
groups D′ and E ′ isogenous to D and E (respectively). The case when D and
E have the same dimension and codimension is generalized to the relative
context provided by Barsotti–Tate groups over k endowed with a group in
the sense of [GV]. Let G be a truncated Barsotti–Tate group of level m over
k and let H be a finite commutative group scheme over k annihilated by
pm. We prove that dim(HomHomHom(G,H)) = dim(HomHomHom(H,G)). We also prove a
stronger form of this identity that involves the Grothendieck group of the
multiplicative monoid scheme over k associated to the reduced ring scheme
EndEndEnd(G)red ×k EndEndEnd(H)oppred .
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1 Introduction

Let p be a prime and let k be a perfect field of characteristic p. Let G and
H be two finite commutative group schemes over k of p power order. Let
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HomHomHom(G,H) be the affine group scheme over k of homomorphisms from G to
H. Let Gt be the Cartier dual of G.

We recall that the a-number of G is aG = dim(HomHomHom(αααp, G)). Equivalently,
aG is the largest integer such that αααaG

p is a subgroup scheme of G. In general,
aG ̸= aGt (see Subsection 2.1) but it is well known that if G is a truncated
Barsotti–Tate group, then we have aG = aGt (for instance, see [GV], Subsec-
tion 3.5). The goal of the paper is to generalize this last identity in order to
get several symmetry and isogeny properties for (truncated) Barsotti–Tate
groups over k.

We begin with the case of Barsotti–Tate groups over k. Let D and E be
two Barsotti–Tate groups over k. It is known that there exists a smallest
nonnegative integer nD,E such that for all integers n ≥ nD,E we have

dim(HomHomHom(D[pn], E[pn])) = dim(HomHomHom(D[pnD,E ], E[pnD,E ])),

cf. [GV], Subsection 6.1. Following [LNV], Definition 7.9 we denote

sD,E = dim(HomHomHom(D[pnD,E ], E[pnD,E ])).

In Section 3 we will provide an elementary (group scheme theoretical) proof
of the following symmetry and isogeny property.

Theorem 1 The dimension sD,E is a symmetric isogenous invariant. In
other words, if D′ and E ′ are Barsotti–Tate groups over k isogenous to D
and E (respectively), then we have sD,E = sE,D = sD′,E′. Moreover we have
the symmetric property nD,E = nE,D.

The case D = E and D′ = E ′ of Theorem 1 (i.e., the equality sD,D =
sD′,D′) was first proved in [V2], Theorem 1.2 (e)] (cf. also [GV], Remark
4.5). We have the following interpretation of nD,E in terms of extensions
(cf. [GV], Subsection 6.1]: for n ∈ N, the homomorphism Ext1(D,E) →
Ext1(D[pn], E[pn]) is injective if and only if n ≥ nD,E. From this and the
symmetric property nD,E = nE,D we get:

Corollary 1 For n ∈ N we consider the two homomorphisms of abstract
groups Ext1(D,E) → Ext1(D[pn], E[pn]) and Ext1(E,D) → Ext1(E[pn], D[pn]).
Then one is injective if and only if the other one is injective.

In Section 4 we will prove the following general symmetric formula.
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Theorem 2 Let m be the smallest positive integer such that pm annihilates
both G and H. We assume that G is a truncated Barsotti–Tate group of level
m over k. Then we have

dim(HomHomHom(G,H)) = dim(HomHomHom(H,G)). (1)

Note that Equation (1) also implies that sD,E = sE,D and nD,E = nE,D

and, when combined with [V2], Theorem 1.2 (e), that sD,E = sD′,E′ (cf.
Remark 4.2 (b)). The following proposition (proved in Subsection 4.4 based
on the examples of Subsection 4.3)) shows that for m > 1 the hypothesis of
Theorem 2 is needed in general.

Proposition 1 Let m > n > 0 be integers. Let G be a truncated Barsotti–
Tate group of level n over k and let H be a finite commutative group scheme
over k annihilated by pm but not by pm−1. Then the following optimal in-
equalities hold

n

m
≤ dim(HomHomHom(G,H))

dim(HomHomHom(H,G))
≤ m

n
. (2)

Moreover, the difference dim(HomHomHom(G,H))− dim(HomHomHom(H,G)) when m > n
vary, can be an arbitrary integer.

For a group scheme Γ over k, let Γ0 and Γred be the identity component and
the reduced group (respectively) of Γ. Let MMM be the multiplicative monoid
scheme over k associated to the reduced ring scheme

EndEndEnd(G)red ×k EndEndEnd(H)oppred = EndEndEnd(G)red ×k EndEndEnd(Ht)red.

By a left MMM -module Z (or a representation Z of MMM) we mean a k-vector
space Z equipped with a homomorphism ρZ from MMM to the multiplicative
monoid scheme over k associated to the ring scheme EndEndEnd(Z). Let σ be the
Frobenius automorphism of k. Let Z(σ) be the pullback of Z via σ viewed
naturally as a left MMM -module; thus ρZ(σ) is the composite of the Frobenius
homomorphism MMM →MMM (σ) with (ρZ)

(σ).
Let K0(MMM) be the Grothendieck group of the abelian category of finite

dimensional left MMM -modules Z; let [Z] ∈ K0(MMM) be the element correspond-
ing to Z. Let I0(MMM) be the subgroup of K0(MMM) generated by elements of the
form [Z(σ)]− [Z] with Z an arbitrary finite dimensional left MMM -module.

Let LLL1 and LLL2 be the Lie algebras over k of the reduced group schemes
HomHomHom(G,H)red and HomHomHom(H,G)red (respectively). Let LLL∨

1 = Homk(LLL1, k) be
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the dual k-vector space. Both LLL∨
1 and LLL2 are naturally left MMM -modules.

For instance, if (g, h) ∈ MMM(k) = EndEndEnd(G)(k) × EndEndEnd(H)opp(k), then we have
an endomorphism cg,h : HomHomHom(H,G)red → HomHomHom(H,G)red which maps l ∈
HomHomHom(H,G)red(k) to g ◦ l ◦h ∈HomHomHom(H,G)red(k) and (g, h) acts on LLL2 via the
Lie differential Lie(cg,h) : LLL2 → LLL2 of cg,h. We have the following stronger
form of Theorem 2 which is proved in Section 5.

Theorem 3 Let m be the smallest positive integer such that pm annihilates
both G and H. We assume that G is a truncated Barsotti–Tate group of level
m over k. Then the images of [LLL∨

1 ] and [LLL2] in K0(MMM)/I0(MMM) coincide.

The kernel of the dimension homomorphism dim : K0(MMM) → Z contains
I0(MMM) and thus it induces a dimension homomorphism

dim : K0(MMM)/I0(MMM) → Z

denoted in the same way. Thus Theorem 3 implies Theorem 2. But we
emphasize that the proof of Theorem 3 we present does rely on Theorem
2. Section 2 gathers some preliminary material required in the proofs of
Theorems 1 to 3.

The particular case of Theorem 1 in which D and E have the same di-
mension and codimension is generalized in Section 6 to the relative contexts
provided by quadruples of the form (L, ϕ, ϑ,G) and (L, gϕ, ϑg−1,G), where
(L, ϕ, ϑ) and (L, gϕ, ϑg−1) are the (contravariant) Dieudonné modules of two
Barsotti–Tate groups over k, where G is a smooth integral closed subgroup
scheme of GLGLGLGLGLGLGLGLGLL subject to the two axioms of [GV], Section 5, and where
g ∈ G(W (k)). The motivation for all these generalizations stems out from
applications to level m stratifications of special fibers of good integral models
of Shimura varieties of Hodge type in unramified mixed characteristic (0, p)
(see [V2], Section 4).

2 Preliminaries

LetW (k) be the ring of p-typical Witt vectors with coefficients in k. Let B(k)
be the field of fractions of W (k). Let B(k){F, F−1} be the noncommutative
Laurent polynomial ring and let

D = D(k) = B(k){F, F−1}/I
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where I is the two-sided ideal generated by all elements Fa − σ(a)F with
a ∈ B(k). Let V = pF−1 ∈ D and let E = E(k) = W (k){F, V } as a subring
of D. For m ∈ N∗, let Wm(k) = W (k)/pmW (k) and Em = Em(k) = E/pmE.
The (contravariant) Dieudonné module of G is a left E-module M which as
a W (k)-module is torsion and finitely generated. If G is annihilated by pm,
then M is as well a left Em-module. If G is a truncated Barsotti–Tate group
of level m, then M is a free Wm(k)-module of finite rank. We have

aG = dimk(M/(FM + VM))

and
aGt = dimk(Ker(F : M → M) ∩Ker(V : M → M)).

2.1 Example with aG ̸= aGt

Let G be such thatM is a k-vector space of dimension 3 which has an ordered
k-basis (v1, v2, v3) with the properties that Fv1 = Fv2 = V v1 = V v2 = 0,
Fv3 = v1, and V v3 = v2. Then aG = 1 while aGt = 2.

2.2 Brief review of quasi-algebraic groups over k

Following [S1] we recall several ways to introduce a quasi-algebraic group Q
over k. The simplest way is to define Q to be a group object of the category
of perfect varieties over k, i.e., of the full subcategory of the category of
schemes over k whose objects are perfections of schemes of finite type over
k (equivalently are perfections of reduced schemes of finite type). Thus Q
can be identified with a covariant functor from the category of commutative
perfect k-algebras that are perfections of finitely generated k-algebras into
the category of groups which is representable by a perfect variety over k.
We also recall that a proalgebraic group over k is a projective limit of quasi-
algebraic groups over k (to be compared with [S1], Definition 1 of Subsection
2.1).

Each quasi-algebraic group Q over k is the perfection Q̃perf of a group
scheme Q̃ over k of finite type (cf. [S1], Proposition 10; the proof of loc.
cit. applies in the noncommutative case as well). Obviously Q = Q̃perf is a
proalgebraic group over k (in the language of [S1], Definition 1 of Subsection
2.1, see also [S1], Example 1) of Subsection 2.1 for the commutative case).
Let Q be the abelian category of commutative quasi-algebraic groups over k
(see [S1], Proposition 5).
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Fact 1 Let f : U1 → U2 be a morphism of the category Q and let k̄ be an
algebraic closure of k. Then the following two statements are equivalent:

(i) f is an isomorphism;

(ii) the abstract homomorphism f(k̄) : U1(k̄) → U2(k̄) is an isomorphism.

Proof: This follows from the fact that each one of these two statements is
equivalent to the third statement that both Ker(f) and Coker(f) are trivial.□

2.3 The χp function on prounipotent groups

Until the end of Section 2 we will assume that k is algebraically closed.
Let P be the abelian category of commutative proalgebraic groups over
k (see [S1], Proposition 7). Note that Q is a full subcategory of P . We
have a thick (Serre) subcategory of P whose objects are finite dimensional
proalgebraic groups (those which are projective limits of commutative quasi-
algebraic groups of bounded dimension) and on it the dimension function
dim (defined in the obvious way) is additive.

We now specialize to commutative prounipotent groups U over k. For each
n ∈ N we have a natural multiplication by p epimorphism (pnU)/(pn+1U) →
(pn+1U)/(pn+2U). Thus, if U/pU is finite dimensional, then we have a
decreasing sequence (dim((pnU)/(pn+1U)))n∈N of nonnegative integers and
therefore there exists a smallest invariant nU ∈ N with the property that the
subsequence (dim((pnU)/(pn+1U)))n≥nU

is constant. This gives that the ker-
nel Ker(p : pnUU → pnUU) is zero dimensional and by a decreasing induction
on i ∈ {0, . . . , nU} we get that that the kernel Ker(p : piU → piU) is finite
dimensional.

The full subcategory of P whose objects are those commutative prounipo-
tent groups U for which U/pU is finite dimensional is thick and on it the
integral valued function defined by the rule

χp(U) = dim(U/pU)− dim(Ker(p : U → U))

is additive (cf. snake lemma).

Fact 2 Let U be a commutative prounipotent group U such that U/pU is fi-
nite dimensional. Then χp(U) ≥ 0. Moreover, the following three statements
are equivalent:

(i) we have χp(U) = 0;
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(ii) the commutative prounipotent group pnUU is zero dimensional;

(iii) the commutative prounipotent group U is finite dimensional.

Proof: If U is annihilated by p (i.e., pU = 0), then χp(U) = dim(U) −
dim(U) = 0. Based on the additivity of χp, a simple induction on a ∈ N∗

shows that if U is annihilated by pa (i.e., paU = 0), then χp(U) = 0 and U
is finite dimensional.

In general, from the additive equality χp(U) = χp(U/p
nUU) + χp(p

nUU)
and from the facts that dim(Ker(p : pnUU → pnUU)) = 0 (see above) and
χp(U/p

nUU) = 0 (cf. previous paragraph), we get that

χp(U) = χp(p
nUU) = dim(pnUU/pnU+1U) ≥ 0.

It is clear that (ii) implies (iii). If (iii) holds, then the constant sequence
(dim((pnU)/(pn+1U)))n≥nU

has constant value 0 and therefore χp(U) = 0,
i.e., (i) holds. If (i) holds, then the endomorphism p : pnUU → pnUU has
zero dimensional cokernel and it is easy to see that this implies that the
identity component of pnUU is trivial. Thus (ii) holds. We conclude that the
statements (i) to (iii) are equivalent. □

2.4 Prounipotent groups associated to W (k)-modules

Each finitely generated W (k)-module M has the structure of a commutative
prounipotent group M with M/pM finite dimensional and with

χp(M) = dimB(k)(M [
1

p
]).

If χp(M) = 0 (i.e., if M has finite length), then M is a commutative quasi-
algebraic group over k which represents the functor that takes the perfection
A of a finitely generated commutative k-algebra into the groupW (A)⊗W (k)M
and whose dimension is lengthW (k)(M).

If X is a finite dimensional B(k)-vector space, then we view X as an
inductive limitX of commutative proalgebraic groups L given by lattices L of
X (i.e., given by free W (k)-submodules L of X of rank equal to dimB(k)(X)).

Definition 1 We say that a subgroup U of X is admissible if and only if
there exist lattices L1 and L2 of X such that U is a proalgebraic subgroup of
L1 that contains L2 (thus L2 ⊂ U ⊂ L1).
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If U1 and U2 are admissible subgroups of X, we can define the index

χ(U1, U2) = dim(U1/U3)− dim(U2/U3) ∈ Z

for each admissible subgroup U3 of X contained in both U1 and U2; this gen-
eralizes the definition χ(L1/L2) for lattices L1 and L2 of X which was intro-
duced in [S2] and which equals χ(L1, L2). Note that χ(U1, U2) = −χ(U2, U1).
For four lattices L1, L2, L3, and L4 of X we also have the following inter-
changing identity

χ(L1, L2)− χ(L3, L4) = χ(L1, L3)− χ(L2, L4). (3)

Example 1 Let U be an admissible subgroup of X, let L be a lattice of X,
and let n ∈ N. Then χ(U,L) = χ(pnU, pnL) and χ(U, pnU) = n dimB(k)(X).
To check this last formula, we note that as χ(pnL, pnU) = −χ(U,L) and
χ(U, pnU) = χ(U,L) + χ(L, pnL) + χ(pnL, pnU), we compute directly that
χ(U, pnU) = χ(L, pnL) = dim(L/pnL) = lengthW (k)(L/p

nL) = n dimB(k)(X).

Let T : X → X ′ be a homomorphism between the underlying abelian
groups of two finite dimensional B(k)-vector spaces. We say that T is proal-
gebraic if and only if it comes from a proalgebraic homomorphism between
lattices T0 : L → L′, i.e., we have

T = X → X ′ = T0(k)⊗Z Z[
1

p
] : L⊗Z Z[

1

p
] → L′ ⊗Z Z[

1

p
].

If T is proalgebraic, we get an inductive homomorphism

T : X → X ′ = T0 ⊗Z Z[
1

p
] : L⊗Z Z[

1

p
] → L′ ⊗Z Z[

1

p
]

which will be also called proalgebraic.
If T is proalgebraic, we consider for each n ∈ N∗ the kernel of (T0 mod pn) :

L/pnL → L′/pnL′. The images in L/pL of such kernels form a decreasing
sequence of quasi-algebraic subgroups, and thus they become constant for
n ≥ n1 for some n1 ∈ N∗, with constant value equal to the image in L/pL
of Ker(T0) (we recall that filtered inverse limits are exact in our abelian
category P of commutative proalgebraic groups, cf. [S1], Subsection 2.3).
Then pn1−1 Coker(T0) is torsion free. Based on this, it is easy to see that the
following three statements are equivalent:
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(i) the homomorphism T is surjective;

(ii) the cokernel Coker(T0) is killed by a power of p;

(iii) the cokernel Coker(T0) is finite dimensional.

Definition 2 Let T : X → X ′ be a proalgebraic homomorphism between the
underlying groups of two finite dimensional B(k)-vector spaces. We say that
T : X → X ′ (or T : X → X ′) is admissible if and only if it comes from
a proalgebraic homomorphism between lattices T0 : L → L′ whose kernel
Ker(T0) and cokernel Coker(T0) are finite dimensional (this is independent
of the choice of lattices L and L′).

We note that the finite dimensionality of Ker(T0) means that Ker(T0) is
a free finitely generated Zp-module. Moreover, if T is admissible, then T is
surjective.

The additivity of the function χp gives that

χp(Ker(T0))− χp(Coker(T0)) = χp(L)− χp(L
′) = dimB(k)(X)− dimB(k)(X

′).

Thus if the B(k)-vector spaces X and X ′ have the same dimension, then
χp(Ker(T0)) = χp(Coker(T0)) and from Fact 2 we get that the finite dimen-
sionality of Ker(T0) is equivalent to the finite dimensionality of Coker(T0).

Example 2 If i and j are distinct integers, f : X → X ′ is a σi-linear
map and g : X → X ′ is a σj-linear map, then using the Dieudonné–Manin
classification of σa-F -isocrystals over k with a ∈ {i − j, j − i} ⊂ Z \ {0}
we easily get that if either f or g is invertible (thus X and X ′ have the
same dimension), then for each lattice L of X the image (f + g)(L) is an
admissible subgroup of X ′ and therefore f + g is admissible.

Lemma 1 Let T : X → X ′ be admissible. Let U1 and U2 (resp. U ′
1 and

U ′
2) be admissible subgroups of X (resp. of X ′). Then the following three

properties hold:

(a) we have χ(U ′
2, T (U2)) − χ(U ′

1, T (U1)) = χ(U ′
2, U

′
1) − χ(U2, U1) and

therefore if χ(U ′
2, U

′
1) = χ(U2, U1), then χ(U ′

2, T (U2)) = χ(U ′
1, T (U1));

(b) we have dimB(k)(X) = dimB(k)(X
′);

(c) if T (U) ⊂ U ′, then for large n the kernel of the induced map U/pnU →
U ′/pnU ′ has dimension equal to dim(U ′/T (U)).
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Proof: As T is admissible, there exists an admissible subgroup U3 of X
contained in both U1 and U2 and such that T (U3) is an admissible subgroup
of X ′ contained in both U ′

1 and U ′
2. Then χ(U ′

2, T (U2)) − χ(U ′
1, T (U1)) =

dim(U ′
2/T (U3))− dim(T (U2)/T (U3))− dim(U ′

1/T (U3)) + dim(T (U1)/T (U3))
is equal to the difference between dim(U ′

2/T (U3)) − dim(U ′
1/T (U3)) and

dim(T (U2)/T (U3))−dim(T (U1)/T (U3)) and thus to the difference χ(U ′
2, U

′
1)−

χ(T (U2), T (U1)). But as T is admissible, it is surjective and Ker(T0) is a free
finitely generated Zp-module and these two properties imply that we have

χ(T (U2), T (U1)) = χ(U2, U1) (4)

and thus that (a) holds.
By taking U1 = pU2 in the Equation (4), from Example 1 applied with

n = 1 we get that (b) holds.
To check (c), let n2 ∈ N∗ be such that pn2 annihilates U ′/T (U). Thus for

n ≥ n2 we have pnU ′ ⊂ T (U) as well as two short exact sequences

0 → Ker(U/pnU → U ′/pnU ′) → U/pnU → T (U)/pnU ′ → 0

and 0 → T (U)/pnU ′ → U ′/pnU ′ → U ′/T (U) → 0. This implies that the di-
mension of Ker(U/pnU → U ′/pnU ′) is equal to the expression dim(U ′/T (U))+
dim(U/pnU)− dim(U ′/pnU ′). Based on (b) and Example 1, this expression
is equal to dim(U ′/T (U)) and thus part (c) holds as well. □

3 Proof of Theorem 1

To prove Theorem 1 we can assume that k is algebraically closed.

3.1 The isogeny invariance of sD,E

Let L and J be the (contravariant) Dieudonné modules of D and E. We
recall that the dual Et of E has Dieudonné module J∨ = HomW (k)(J,W (k))
with F and V acting on h ∈ J∨ via the rules: Fh(x) = σ(h(V x)) and
V h(x) = σ−1(h(Fx)) for all x ∈ J .

Let HomW (k)(J, L)
♭ be the sublattice of HomW (k)(J, L) formed by W (k)-

linear maps that send V J to V L. We note that

HomW (k)(J, L)
♭ = HomW (k)(J, L) ∩ HomW (k)(V J, V L)
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is the largest sublattice of HomW (k)(J, L) for which we have a homomorphism
of prounipotent groups

ΨJ,L : HomW (k)(J, L)
♭ → HomW (k)(J, L) (5)

defined by the abstract homomorphism

ΨJ,L : HomW (k)(J, L)
♭ → HomW (k)(J, L)

that maps h ∈ HomW (k)(J, L)
♭ to h− 1

p
FhV . It induces an admissible proal-

gebraic endomorphism Ψ : X → X in the sense of Section 2, where

X = HomB(k)(J [
1

p
], L[

1

p
]) = HomW (k)(J, L)

♭[
1

p
] = HomW (k)(J, L)[

1

p
]

is a B(k)-vector space of finite dimension.
The kernel of ΨJ,L is the quasi-algebraic group HomE(J, L) = Hom(D,E)

of Dieudonné module homomorphisms. We check that the kernel of the
reduction of ΨJ,L modulo pn is the quasi-algebraic group Hom(D[pn], E[pn])
of the abstract group

HomEn(J/p
nJ, L/pnL) = Hom(D[pn], E[pn]) =HomHomHom(D[pn], E[pn])(k)

of homomorphisms between Dieudonné modules modulo pn. The crystalline
Dieudonné theory provides a natural evaluation homomorphism f from Hom(D[pn], E[pn])
to the kernel of the reduction of ΨJ,L modulo pn (note that f is a morphism

of the abelian category Q). From [LNV], Lemma 8.7 we get that the abstract
homomorphism f(k) is an isomorphism and therefore from Fact 1 we get that
f itself is an isomorphism.

Let D′ and E ′ be Barsotti–Tate groups over k isogenous to D and E
(respectively). Let L′ and J ′ be the (contravariant) Dieudonné modules of
D′ and E ′ (respectively). We have identifications L[1

p
] = L′[1

p
], J [1

p
] = J ′[1

p
],

and X = HomW (k)(J
′, L′)[1

p
] = HomW (k)(J

′, L′)♭[1
p
]. Moreover, Ψ : X → X

is also induced by a homomorphism of prounipotent groups

ΨJ ′,L′ : HomW (k)(J
′, L′)♭ → HomW (k)(J

′, L′)

defined by the same rule as ΨJ,L.
Lemma 1 (c) gives information on dim(HomHomHom(D[pn], E[pn])) for large n and

thus for all n ≥ nD,E we have

sD,E = dim(HomW (k)(J, L)/ΨJ,L(HomW (k)(J, L)
♭))
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and thus also

sD,E = χ(HomW (k)(J, L),ΨJ,L(HomW (k)(J, L)
♭)). (6)

The dimension of the k-vector space HomW (k)(J, L)/HomW (k)(J, L)
♭ is the

product of the dimension of E and of the codimension ofD and thus it is equal
to the dimension of the k-vector space HomW (k)(J

′, L′)/HomW (k)(J
′, L′)♭.

From this equality and the Equation (3) applied with (L1, L2, L3, L4) =
(HomW (k)(J

′, L′),HomW (k)(J, L),HomW (k)(J
′, L′)♭,HomW (k)(J, L)

♭) we get that

χ(HomW (k)(J
′, L′),HomW (k)(J, L)) = χ(HomW (k)(J

′, L′)♭,HomW (k)(J, L)
♭).

(7)
From Formula (7) and Lemma 1 (a) applied with (T , U1, U2, U

′
1, U

′
2) =

(Ψ,HomW (k)(J, L)
♭,HomW (k)(J

′, L′)♭,HomW (k)(J, L),HomW (k)(J
′, L′)) we get

directly that χ(HomW (k)(J
′, L′),ΨJ ′,L′(HomW (k)(J

′, L′)♭)) is equal to

χ(HomW (k)(J, L),ΨJ,L(HomW (k)(J, L)
♭)). From this and Formula (6) and its

analogue with (J, L) replaced by (J ′, L′) we get that sD,E = sD′,E′ is an
isogeny invariant.

3.2 The symmetry of sD,E

In this subsection we will prove that sD,E = sE,D using Serre duality for
unipotent connected commutative quasi-algebraic groups (see [S1], [B], and
[BD], Section 3). We recall that Serre duality is an involutory antiequivalence
of the category of unipotent connected commutative quasi-algebraic groups
which preserves dimensions and short exact sequences and thus also finite
direct sums (for instance, see [B], Proposition 1.2.1).

We also recall that for a finitely generated Wm(k)-module M and its dual
M∨ = HomWm(k)(M,Wm(k)), the Serre dual of M is M∨ in a functorial
way with respect to all σa-linear maps with a ∈ Z (cf. [S1], Subsection 8.4,
Proposition 4 and Lemma 2).

Lemma 2 Let f : U1 → U2 be a homomorphism between unipotent connected
commutative quasi-algebraic groups of the same finite dimension. Then the
dimension of the kernel of f is equal to the dimension of the kernel of the
Serre dual f ∗ : U∗

2 → U∗
1 of f . In particular, f is an isogeny if and only if

f ∗ is an isogeny.
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Proof: We have short exact sequences 0 → Ker(f)0 → U1 → U1/Ker(f)0 →
0 and 0 → Im(f) → U2 → U2/ Im(f) → 0 as well as a natural isogeny
U1/Ker(f)0 → Im(f). As U1 and U2 have the same dimension, we get that
Ker(f)0 and U2/ Im(f) have the same dimensions. As Serre duality preserves
short exact sequences, (U2/ Im(f))∗ is a subgroup of U∗

2 contained in Ker(f ∗).
As Serre duality preserves dimensions, we get that

dim(Ker(f ∗)) ≥ dim((U2/ Im(f))∗) = dim(U2/ Im(f)) = dim(Ker(f)0).

Thus dim(Ker(f ∗)) ≥ dim(Ker(f)). As the Serre duality is involuntary, we
have f = (f ∗)∗ and therefore by replacing f with f ∗ in the last inequality we
get that dim(Ker(f)) ≥ dim(Ker(f ∗)). Thus dim(Ker(f)) = dim(Ker(f ∗)).□

We consider the lattice

HomW (k)(J, L)
♯ = HomW (k)(J, L) + HomW (k)(FJ, FL)

of the B(k)-vector space X. For an element h ∈ HomW (k)(J, L) we have
1
p
FhV ∈ HomW (k)(FJ, FL). Thus the admissible proalgebraic homomor-

phism of B(k)-vector spaces Ψ : X → X that maps h to h− 1
p
FhV induces

a homomorphism

ΨJ,L,+ : HomW (k)(J, L) → HomW (k)(J, L)
♯ (8)

of prounipotent groups.
The kernel of ΨJ,L,+ is the quasi-algebraic group HomE(J, L) = Hom(D,E)

of Dieudonné module homomorphisms and thus is equal to the kernel of ΨJ,L.

Fact 3 The following two inclusions HomW (k)(J, L)
♭ ⊂ HomW (k)(J, L) and

HomW (k)(J, L) ⊂ HomW (k)(J, L)
♯ induce a quasi-isomorphism from (5) to

(8) viewed as complexes of prounipotent groups and thus they also induce
a quasi-isomorphism between the complexes (5) and (8) modulo pm viewed
as complexes of unipotent connected commutative quasi-algebraic groups. In
particular, the kernels of the reductions modulo pm of ΦJ,L and ΨJ,L,+ have
the same dimension.

Proof: The fact is equivalent to the following two identities

Im(ΨJ,L) = HomW (k)(J, L) ∩ Im(ΨJ,L,+)
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and
HomW (k)(J, L) + Im(ΨJ,L,+) = HomW (k)(J, L)

♯.

The inclusions “⊆” are obvious. We now check the reversed inclusions “⊇”.
Let g ∈ HomW (k)(J, L) ∩ Im(ΨJ,L,+) and let h ∈ HomW (k)(J, L) be such

that g = ΨJ,L,+(h) = h− 1
p
FhV . Then 1

p
FhV = g − h ∈ HomW (k)(J, L) and

therefore we have h ∈ HomW (k)(J, L)
♭. Thus g = ΨJ,L(h) ∈ Im(ΨJ,L).

Let v ∈ HomW (k)(J, L)
♯. Let (g, l) ∈ HomW (k)(J, L) × HomW (k)(FJ, FL)

be such that v = g+ l. Then we have l = 1
p
FuV for some u ∈ HomW (k)(J, L)

and therefore l − u = v − (g + u) belongs to the image of ΨJ,L,+. Thus
v = (g + u) + (l − u) ∈ HomW (k)(J, L) + Im(ΨJ,L,+).

The reversed inclusions “⊇” follow from the last two paragraphs. □
We are now ready to complete the proof of Theorem 1. The Serre dual of

(8) modulo pm is isomorphic to the reduction modulo pm of

ΨL,J : HomW (k)(L, J)
♭ → HomW (k)(L, J) (9)

(cf. the paragraph before Lemma 2); here (9) is the analogue of (5) but
with the roles of J and L interchanged. Based on this and Lemma 2, we get
that HomHomHom(E[pm], D[pm])red (i.e., the reduced algebraic group whose perfec-
tion is the kernel of ΨL,J modulo pm) has the same dimension as the kernel
of the reduction modulo pm of ΨJ,L,+. From this and Fact 3 we get that
HomHomHom(E[pm], D[pm])red has the same dimension as HomHomHom(D[pm], E[pm])red (i.e.,
as the reduced algebraic group whose perfection is the kernel of ΨJ,L mod-
ulo pm). As this holds for all m ∈ N∗, we get that nD,E = nE,D and that
sD,E = sE,D. This ends the proof of Theorem 1. □

4 Proof of Theorem 2

To prove Theorem 2 we will use homological properties of left Em-modules
and some sort of a noncommutative duality over the Cartier–Dieudonné ring
Em which is analogous to the fact that for an affine connected smooth curve
SpecA over k with field of rational functions K, the A-module K/A maps
isomorphically to the A-torsion submodule in the k-dual of the space of one
forms on SpecA via the functional “residue at infinity.”

Let m ∈ N∗. The left Em-modules of finite length are those that are
finitely generated over Wm(k).

14



Proposition 2 (a) A left Em-module M of finite length corresponds to a
truncated Barsotti–Tate group G of level m over k if and only if M is of
finite tor dimension.

(b) If a left Em-module M of finite length corresponds to a truncated
Barsotti–Tate group G of level m over k of height r, then M has a free
resolution

0 → Er
m → Er

m → M → 0.

Proof: We first prove (b). Let D be a Barsotti–Tate group over k such that
G = D[pm]; its height is r and we denote its dimension by d. Let L be the
left E-module which is the Dieudonné module of D. To prove (b) it suffices
to show that we have a free resolution

0 → Er → Er → L → 0

in which the E-linear map Er → L maps a (any) E-basis of Er into a W (k)-
basis of M .

We consider epimorphisms κ : Er → L which map a E-basis of Er into a
W (k)-basis of M . It suffices to show that the kernel Ker(κ) of one of them
(and thus of each one of them) is a free left E-module of rank r. Given a
finite Galois extension k′ of k, it is easy to see that the left E-module Ker(κ)
is free of rank r if and only if E(k′) ⊗E Ker(κ) is a free left E(k′)-module of
rank r (cf. the notations of Section 2). We conclude that we can replace k
by k′ (i.e., we can perform a pullback of G to k′).

By replacing k with a finite Galois extension k′ of it, we can assume
that there exists a W (k)-basis {e1, . . . , er} of M for which there exist an
element g ∈ Ker(GLGLGLL(W (k)) → GLGLGLL(k)) and a permutation π of the set
∆ = {1, 2, . . . , r} such that for each element i ∈ ∆ we have Fei = pεig(eπ(i)),
where εi ∈ {0, 1} is 1 if and only if i ≤ d. The existence of such a W (k)-basis
of L after the mentioned replacement of k follows from the classification of
Barsotti–Tate groups of level 1 over k̄ obtained by Kraft and Ekedahl–Oort,
to be compared with [V2], Subsection 2.3.

We consider two extra W (k)-bases {a1, . . . , ar} and {b1, . . . , br} of L that
have the following three properties:

(i) For i ∈ {1, . . . , d} we have ai = V bπ(i).

(ii) For i ∈ {d+ 1, . . . , r} we have Fai = bπ(i).

(iii) For each i ∈ ∆, ai, bi, and ei are congruent modulo p.
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Let h = (hi,j)i,j∈∆ ∈ GLGLGLr(W (k)) be the invertible matrix such that for
each element i ∈ ∆ we have an equality ai =

∑
j∈∆ hijbj. Due to the property

(iii) and the fact that g ∈ Ker(GLGLGLL(W (k)) → GLGLGLL(k)), we get that hmodulo
p is the identity r × r matrix with coefficients in k.

The left E-module

P0 = (⊕i∈∆Ea′i ⊕i∈∆ Eb′i)/(a′i −
∑
j∈∆

hijb
′
j|i ∈ ∆)

is isomorphic to Er. If [a′i] and [b′i] are the images of a′i and b′i in P0, then
the associations [a′i] → ai and [b′i] → bi define an E-linear surjection θ :
P0 → L which maps an E-basis of P0 into a W (k)-basis of L (thus, up to an
identification of P0 with Er, the search for κ will turn out to be θ).

Let P1 = Er = ⊕i∈∆Eci and let η : P1 → P0 be the E-linear map that maps
ci to [a′i] − V [b′π(i)] if ∈ {1, . . . , d} and to F [a′i] − [b′π(i)] if i ∈ {d + 1, . . . , r}.
The kernel of θ contains the image of η and therefore we get a complex

P1
η−→ P0

θ−→ L → 0.

To end the proof of (b), it suffices to show that in fact we have a short exact
sequence

0 → P1
η−→ P0

θ−→ L → 0.

Due to the very constructions, the left E-module P0/η(P1) is the same as
the W (k)-submodule L′ of P0/η(P1) generated by [a′i] + η(P1)’s with i ∈ ∆.
As the W (k)-linear map L′ = P0/η(P1) → L is a surjective map from a
W (k)-module generated by r elements onto a free W (k)-module of rank r,
it is an isomorphism and therefore the complex P1 → P0 → L → 0 is exact
at P0. We are left to show that η is injective. It suffices to show that the
reduction η1 : P1/pP1 → P0/pP0 of η modulo p is injective. But as h is
congruent modulo p to the identity matrix, we have canonical identifications
P0/pP0 = Er

1 = ⊕j∈∆E1ā
′
i, where ā

′
i = [a′i]+pP0. To show that η1 is injective,

it suffices to show that the assumption that there exists a linear dependence
relation with coefficients αi in E1 of the form

d∑
i=1

αi(ā
′
i − V ā′π(i)) +

r∑
i=d+1

αi(F ā′i − ā′π(i)) = 0 (10)

leads to a contradiction.
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We have a canonical identification E1 = ⊕i∈NkF
i ⊕i∈N∗ kV i of k-vector

spaces. Suppose there exists s ∈ N such that for some i ∈ {d+ 1, . . . , r} the
coefficient ci,F s of F s in αi is a nonzero element of k. But in such a case, it is
easy to see that the coefficient of F s+1ā′i in the left hand side of the Equation
(10) is a nonzero element of k, contradiction. Thus αd+1, . . . , αr ∈ ⊕i∈N∗kV i

and a similar argument shows that α1, . . . , αd ∈ ⊕i∈N∗kF i. From this and
the Equation (10) we easily get that in fact we have αi = 0 for all i ∈ ∆,
contradiction. Thus η1 is injective and this ends the proof of (b).

The only if part of (a) follows from (b). We now proof the if part of (a). We
assume that the left Em-module M of finite length has finite tor dimension.
For u ∈ {1, . . . ,m} we consider the following infinite free resolution

· · · pu−→ Em
pm−u

−−−→ Em
pu−→ Em/p

uEm → 0

of the right Em-module Em/p
uEm. As M has finite tor dimension, we have

Torn(Em/p
uEm,M) = 0 for n >> 0 and thus by tensoring this free resolution

with M we get that the complex

M
pm−u

−−−→ M
pu−→ M

is exact. By taking u = 1, we get that each cyclic W (k)-module which is a
direct summand of M is isomorphic to Wm(k). Thus the finitely generated
Wm(k)-module M is free.

As M has finite tor dimension as a Em-module and is free as a Wm(k)-
module, the left E1-module M/pM has also finite tor dimension. Based on
this, an argument similar to the one of the previous paragraph but using the
free resolution

· · · F−→ E1
V−→ E1

F−→ E1/FE1 → 0

of the right E1-module E1/FE1, shows that the complex

M/pM
V−→ M/pM

F−→ M/pM

is exact. Thus M/pM corresponds to a truncated Barsotti–Tate group of
level 1 over k. From this and the previous paragraph we get that M corre-
sponds to a truncated Barsotti–Tate group G of level m over k. Thus (a)
holds as well. □

We have an involutory antiautomorphism ιm : Em → Em that interchanges
F and V and that fixes Wm(k), and this allows us to transform right Em-
modules into left Em-modules. If P is a left Em-module, let

P∨ = HomWm(k)(P,Wm(k))
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be endowed with the left Em-module structure via the same rules as in the
first paragraph of Section 3, and let

P# = HomEm(P,Em)

be endowed with the left Em-module structure given by the rule (af)(x) =
f(x)ιm(a) where f ∈ P#, a ∈ Em, and x ∈ P . Similarly, the right multi-
plications of Em by elements ιm(a) endow naturally Ext1Em

(P,Em) with the
structure of a left Em-module.

If P is a finitely generated left Em-module and M a left Em-module of
finite length, then HomEm(P,M) has a natural structure of a commutative
quasi-algebraic group HomEm(P,M). This can be checked easily by choosing
generators of P and an expression of M as a direct sum of cyclic Wm(k)-
modules and by checking directly the independence of the resulting commu-
tative quasi-algebraic group structure HomEm(P,M) of HomEm(P,M) from
the choices made.

Fact 4 If M and N are both left Em-modules of finite length and thus the
Dieudonné modules of commutative group schemes G and H (respectively),
then this commutative quasi-algebraic group HomEm(N,M) is isomorphic to
the commutative quasi-algebraic group Hom(G,H).

Proof: The crystalline Dieudonné theory provides a natural evaluation mor-
phism f : Hom(G,H) → HomEm(P,M) of the abelian category Q. If k̄ is
an algebraic closure of k, then from the classical (contravariant) Dieudonné
theory we get that f(k̄) is an isomorphism. Thus the fact follows from Fact
1. □

Fact 5 Let P be a free left Em-module of finite rank and let M be a left
Em-module of finite length. Then the unipotent connected commutative quasi-
algebraic groups HomEm(P,M) and HomEm(P

#,M∨) are naturally Serre dual.

Proof: This follows from the fact that Serre duality commutes with finite
direct sums and interchanges F and V in the same way as ιm does. □

Now Theorem 2 follows from the following proposition applied to the
Dieudonné modules M and N of G and H (respectively) and from the Fact
4:

18



Proposition 3 Let M , N be two left Em-modules of finite length. We as-
sume that M is the Dieudonné module of a truncated Barsotti–Tate group
G of level m over k. Then HomEm(M,N) has the same dimension as
HomEm(M

∨, N∨) and thus also as HomEm(N,M).

Proof: We consider a free resolution

0 → P1 → P0 → M → 0

with P1 and P0 left Em-modules isomorphic to Er
m and with r as the height

of G, cf. Proposition 2 (b). Using Lemma 2 applied to the homomorphism

f : HomEm(P0, N) → HomEm(P1, N)

and the Fact 5, the kernel HomEm(M,N) of f has the same dimension as the

kernel HomEm(Coker(P
#
0 → P#

1 ), N∨) of the Serre dual

f ∗ : HomEm(P
#
1 , N∨) → HomEm(P

#
0 , N∨)

of f . Thus it suffices to show that Coker(P#
0 → P#

1 ) = Ext1Em
(M,Em) is

isomorphic to M∨. But this is a particular case of the following lemma. □

Lemma 3 If N is a left Em-module of finite length, then we have a natural
isomorphism of left Em-modules from Ext1Em

(N,Em) to N∨.

Before proving this lemma, we will need some preliminary material on left
Em-modules. Let Sm be the multiplicative subset of regular elements of Em,
i.e., of elements of Em with nonzero images in both k[F ] = Em/(p, V ) and
k[V ] = Em/(p, F ). Note that Sm admits calculus of left and right fractions
(i.e., the left and right Ore conditions are satisfied). In other words, for each
s ∈ Sm and x ∈ Em, the intersection sets Smx ∩ Ems and xSm ∩ sEm are
nonempty. Let Km be the localization of Em with respect to Sm and let
Em → Km be the natural inclusion of rings. The multiplicative set of powers
of F +V also satisfies the left and right Ore conditions, and inverting F +V
in Em we get the product of skew Laurent polynomial ringsWm(k){F, F−1}×
Wm(k){V, V −1}. This gives a product description ofKm: it is flat over Z/pmZ
and modulo p it is the product k(F )× k(V ) of two (skew) division rings.

Definition 3 Let P be a left Em-module. By its finite part Fin(P ) we mean
the left Em-submodule

{x ∈ P |Emx is a finitely generatedWm(k)-module} = Ker(P → Km ⊗Em P ).

19



We have the following elementary fact.

Fact 6 The short exact sequence 0 → Em → Km → Km/Em → 0 is an
injective resolution of Em and therefore we have an identity Ext1Em

(N,Em) =
HomEm(N,Km/Em) of left Em-modules.

Proof: Based on the Baer Criterion, it suffices to show that for each nonzero
element a ∈ Em, every Em-linear map l from Ema toKm or toKm/Em extends
to a Em-linear map l′ from Em to Km or to Km/Em (respectively). Using
induction on m ∈ N∗, it suffices to check the existence of l′ in the case when
m = 1.

We first consider the case when the codomain of l is K1. By replacing
a with a left multiple of it by an element of S1, we can assume that either
a = 1 or a = V . If a = 1, then l′ = l exists. If a = V , then l(f) = (0, b) ∈
K1 = k(F )× k(V ) with b ∈ k(V ) and therefore we can define l′ via the rule
l′(1) = (0, V −1b) ∈ K1 = k(F )× k(V ).

Next we consider the case when the codomain of l is K1/E1. If a ∈ S1,
then Ema is a free Em-module and therefore l lifts to a Em-linear map f :
Ema → K1. If f ′ : Em → K1 is a Em-linear map which extends f (cf.
previous paragraph), then we can take l′ to be the composite of f ′ with the
epimorphism K1 → K1/E1. We now assume that a /∈ S1. Thus either a = V tc
with c ∈ k{V } \ {0} ⊂ E1 and t ∈ N∗ or a = F tc with c ∈ k{F} \ {0} ⊂ E1

and t ∈ N∗. The two situations are similar and thus to fix the ideas we will
assume that a = V tc. We write l(a) = (0, b) + E1 with b ∈ k(V ). Thus we
can define l′ via the rule l′(1) = (0, c−1V −tb) + E1 ∈ K1/E1.

Therefore l′ always exists. □
We have “development at infinity” homomorphisms to skew Laurent series

rings
em,F : Km → Wm(k)((F

−1))

and
em,V : Km → Wm(k)((V

−1))

obtained by mapping V to pF−1 and F to pV −1 (respectively).
Let λm : Km/Em → Wm(k) be the Wm(k)-linear map

λm([f + Em]) = (constant term of em,F (f))− (constant term of em,V (f)).

We view Km/Em as a (Em,Wm(k))-bimodule (Em on left, Wm(k) on right).
Let HomWm(k)(Em,Wm(k)) be endowed with the structure of a (Em,Wm(k))-
bimodule by the rule (ahb)(x) = h(xa)b with a ∈ Em, b ∈ Wm(k), h ∈

20



HomWm(k)(Em,Wm(k)), and x ∈ Em. We define a map of (Em,Wm(k))-
bimodules

τm : Km/Em → HomWm(k)(Em,Wm(k))

by the rule τm(h+ Em)(x) = λm(xh+ Em) with x, h ∈ Em.

Lemma 4 The map τm of (Em,Wm(k))-bimodules is injective and its im-
age is the finite part Fin(HomWm(k)(Em,Wm(k))) of HomWm(k)(Em,Wm(k))
(viewed as a left Em-module).

Proof: It suffices to show that for each f ∈ Sm, the restriction

τm,f : {x ∈ Km/Em|fx = 0} → {x ∈ HomWm(k)(Em,Wm(k))|fx = 0}

of τm is a bijection of right Wm(k)-modules. As f is a regular element of Em,
the short exact sequence of left Em-modules 0 → Emf → Em → Em/Emf →
0 is a free resolution of the left Em-module Em/Emf and it is easy to see that
Em/Emf is a left Wm(k)-module of finite length. From this and Proposition
2 (a) we get that Em/Emf corresponds to a truncated Barsotti–Tate group
of level m and in particular that the left Wm(k)-module Em/Emf is free of
finite rank. Via the involutory antiautomorphism ιm, we get that the right
Em-module Em/fEm is a right free Wm(k)-module of finite rank.

As the domain and the codomain of τm,f are both free right Wm(k)-
modules of the same finite rank equal to the rank of the free right Wm(k)-
module Em/fEm, it suffices to show that τm,f modulo p is an injective k-
linear map. Thus to prove the lemma it suffices to show that τ1 is injec-
tive. To check this, we can assume that k is algebraically closed and it
suffices to show that the restriction of τ1 to each simple E1-submodule S of
K1/E1 = [k(F )× k(V )]/E1 is injective.

In this and the next paragraph we will check that there exist precisely
three simple left E1-submodules of K1/E1: generated by (F − 1)−1 + E1, by
(V − 1)−1 + E1, and by (F + V )−1V + E1 = (0, 1) + E1. Let x = (x1, x2) ∈
k(F ) × k(V ) be such that S is generated by x + E1. If x ∈ k{F} × k{V },
then S = [k{F} × k{V }]/E1 is a one dimensional k-vector space generated
by (F + V )−1V + E1. Similarly, if either x1 = 0 or x2 = 0, then it is easy to
see that S = [k{F} × k{V }]/E1.

Thus we can assume that x /∈ k{F}× k{V } and that neither x1 nor x2 is
0. To fix the ideas we can assume that x1 /∈ k{F} and x2 ̸= 0 and we want
to show that S is generated by (F − 1)−1 + E1. Writing x1 = f1(F )−1f2(F )

21



with f1(F ), f2(F ) ∈ k{F}\{0}, we can assume that x ∈ S−{0} is such that
f1(F ) has the smallest possible degree d1 ∈ N∗ in F . As k is algebraically
closed, there exists a ∈ k such that we can write f1(F ) = f ′

1(F )(F − a)
with f ′

1(F ) ∈ k{F}. Based on the smallest possible degree d1 property we
easily get that we can assume that f ′

1(F ) = 1. Moreover, modulo elements
in FE1 = E1F and modulo a multiplication by a nonzero element of k and
thus modulo the replacement of a by another element in k, we can assume
that f2(F ) = 1 and thus that x1 = (F − a)−1. If a = 0, then Fx =
(1, 0) ∈ [k{F}×k{V }] \E1 and therefore Fx+E1 generates S which implies
that x ∈ k{F} × k{V } a contradiction. Thus a ∈ k \ {0} and therefore
(F − a)x+E1 = (0,−ax2 − 1) +E1. Thus, if −ax2 − 1 /∈ V k{V }, then from
the end of the last paragraph we get that S = [k{F} × k{V }]/E1 and this
contradicts the fact that x1 /∈ k{F}. Therefore −ax2 − 1 ∈ V k{V } which
implies that x+ E1 = (F − a)−1 + E1. As a ∈ k \ {0} and k is algebraically
closed, by multiplying x with a nonzero element of k we can assume that
x+ E1 = (F − 1)−1 + E1.

The identities

1 = −λ1((0, 1) + E1) = λ1((F − 1)−1 + E1) = −λ1((V − 1)−1 + E1),

imply that τ1 is nontrivial on these three simple left E1-submodules ofK1/E1.□

4.1 Proof of Lemma 3

As the left Em-module Ext1Em
(N,Em) can be identified based on Fact 6

with HomEm(N,Km/Em), from Lemma 4 we get that it can be identified
via τm with HomEm(N,HomWm(k)(Em,Wm(k))) and thus also with the left
Em-module N∨ = HomWm(k)(N,Wm(k)) as one can easily check using a pre-
sentation of the left Em-module N of finite length. This ends the proof of
Lemma 3 and thus also the proofs of Proposition 3 and of Theorem 2. □

4.2 Remarks

(a) Let R be a perfect ring of characteristic p, let W (R) be the ring of
p-typical Witt vectors with coefficients in R, and let σR be the Frobenius
automorphism of R, W (R), and B(R) = W (R)[1

p
]. Let

D(R) = B(R){F, F−1}/I(R) and E(R) = W (R){F, V } ⊂ D(R)
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be defined similarly to D(k) = D and E(k) = E (thus I(R) is the two-
sided ideal generated by all elements Fa − σR(a)F with a ∈ B(R)). Let
Em(R) = E(R)/pmE(R) and Wm(R) = W (R)/pmW (R). Then Lemma 3
continues to hold in the context of Em(R) and Wm(R) provided the role of
N is replaced by the one of a left Em(R)-module whose projective dimension
as a Wm(R)-module is at most one (however, the proof is more complicated
in this generality provided by R).

(b) Equation (1) implies that sD,E = sE,D. We recall from [V2], Theorem
1.2 (e) and [GV], Remark 4.5 that sD = sD,D is an isogeny invariant. From
the last two sentences we get directly that sD,E = 1

2
(sD⊕E − sD − sE) is an

isogeny invariant. Based on this and [V2], Theorem 1.2 (c) and (f), one gets
that sD,E can be easily computed in terms of the Newton polygons of D and
E. For instance, if D is isoclinic of dimension d and codimension c and E is
isoclinic of dimension f and codimension e, then sD = cd, sE = ef , and

sD⊕E = (c+ e)(d+ f)− |cf − de|

(cf. [V2], Theorem 1.2 (c) and (f)) and therefore we have

sD,E = min{cf, de}.

4.3 Example

Let n,m, t be positive integers such that m = n+ t. Let q ∈ {2t− 1, 2t}. Let
H be such that its Dieudonné module N is isomorphic to E/(F, V )2n+q. Then
pm annihilates H but pm−1 does not annihilate H. Let G = D[pn], where D
is a supersingular Barsotti–Tate group over k of height 2; thus the Dieudonné
module M of G is isomorphic to En/(F − V ). We have canonical identifica-
tions of quasi-algebraic groups HomE(M,N) = (F, V )2n+q−1/(F, V )2n+q and
HomE(N,M) = M (cf. the notations of Subsection 2.4 and of the proof of
Theorem 2). From this and Fact 4 we get that

dim(HomHomHom(H,G)) = lengthW (k)((F, V )2n+q−1/(F, V )2n+q) = 2n+ q

and that
dim(HomHomHom(G,H)) = lengthW (k)(M) = 2n.

Thus dim(HomHomHom(G,H)) − dim(HomHomHom(H,G)) = −q. From this via Cartier
duality we get that dim(HomHomHom(Gt, Ht))− dim(HomHomHom(Ht, Gt)) = q.

If q = 2t, then we have dim(HomHomHom(H,G)) = m
n
dim(HomHomHom(G,H)) and

dim(HomHomHom(Ht, Gt)) = n
m
dim(HomHomHom(Gt, Ht)).
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4.4 Proof of Proposition 1

The last part and the optimality part of Proposition 1 follow from Subsection
4.3. If the inequality dim(HomHomHom(G,H)) ≤ m

n
dim(HomHomHom(H,G)) always holds,

then by replacing in this inequality the pair (G,H) by the pair (Gt, Ht)
and by using the Cartier duality we easily get that the other inequality
n
m
dim(HomHomHom(H,G)) ≤ dim(HomHomHom(G,H)) also holds. Thus it suffices to show

that the inequality dim(HomHomHom(G,H)) ≤ m
n
dim(HomHomHom(H,G)) holds.

Let D be a Barsotti–Tate group over k such that G = D[pn], cf. [I], The-
orem 4.4 e). Let C = HomHomHom(H,D[pm]); it is a commutative group scheme of
finite type over k annihilated by pm. From the short exact sequences 0 →
G → D[pn] → D[pm−n] → 0 and 0 → D[pm − n] → D[pn] → G → 0, we get
an exact complex 0 →HomHomHom(G,H) →HomHomHom(D[pm], H) as well as an identity
HomHomHom(H,G) = C[pn]. Thus dim(HomHomHom(G,H)) ≤ dim(HomHomHom(D[pm], H)) and
dim(HomHomHom(H,G)) = dim(C[pn]). We have dim(HomHomHom(D[pm], H)) = dim(C)
and dim(C) ≤ m

n
dim(C]pn]), cf. Equation (1) and Lemma 5 below (re-

spectively). From the last two sentences we get that dim(HomHomHom(G,H)) ≤
m
n
dim(HomHomHom(H,G)). Thus Inequalities (2) hold. □

Lemma 5 Let m > n > 0 be integers. Let C be a commutative group scheme
of finite type over k annihilated by pm. Then the dimension of its subgroup
scheme C[pn] = Ker(pn : C → C) is at least equal to n

m
dim(C).

Proof: For i ∈ {0, . . . ,m − 1} let ai = dim(C[pi+1]/C[pi]). Then we have
dim(C[pn]) =

∑n−1
j=0 aj and dim(C) =

∑m−1
i=0 ai. Thus the difference

m dim(C[pn])− n dim(C) = (m− n)
n−1∑
j=0

aj − n
m−1∑
i=n

ai

is the sum of n(m − n) expressions of the form aj − ai with 0 ≤ j < n ≤
i ≤ m − 1. But for 0 ≤ j < i ≤ m − 1 the multiplication by pi−j induces a
monomorphism C[pi+1]/C[pi] → C[pj+1]/C[pj] and therefore the inequality
aj − ai ≥ 0 holds. The lemma follows from the last two sentences. □

5 Proof of Theorem 3

Let S(MMM) be the set (of representatives) of isomorphism classes of finite
dimensional simple leftMMM -modules. The abelian group K0(MMM) is canonically
identified with the free abelian group on S(MMM).
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Two left MMM -modules Z1 and Z2 of finite dimension are isomorphic if and
only if the two leftMMM (σ)-modules Z

(σ)
1 and Z

(σ)
2 are isomorphic. As the Frobe-

nius homomorphism MMM → MMM (σ) is a dominant morphism between reduced
schemes of finite type over k, the two leftMMM (σ)-modules Z

(σ)
1 and Z

(σ)
2 are iso-

morphic if and only if the two left MMM -modules Z
(σ)
1 and Z

(σ)
2 are isomorphic.

From the last two sentences we get that:

(i) the automorphism σ acts naturally on S(MMM): the isomorphism class
[Z] is mapped to the isomorphism class [Z(σ)];

(ii) it makes sense to speak about the partition of S(MMM) into orbits of the
action of σ on S(MMM): [Z1], [Z2] ∈ S(MMM) belong to the same orbit if and only

if there exists n ∈ N such that either [Z1] = [Z
(σn)
2 ] or [Z

(σn)
1 ] = [Z2].

Let O(MMM) be the set of orbits of the action of σ on S(MMM). Based on
(ii), the abelian group K0(MMM)/I0(MMM) is canonically identified with the free
abelian group on O(MMM). For i ∈ {1, 2} we write

[LLL∨
1 ] =

∑
[Z]∈S(MMM)

n1,[Z][Z] ∈ K0(MMM)

and
[LLL2] =

∑
[Z]∈S(MMM)

n2,[Z][Z] ∈ K0(MMM),

where each ni,[Z] ∈ N and all but a finite number of the ni,[Z]’s being 0.
Let O(MMM,G,H) be the smallest finite subset of O(MMM) such that for each
o ∈ O(MMM) \O(MMM,G,H) and for every [Z] ∈ o we have n1,[Z] = n2,[Z] = 0.

Theorem 3 is equivalent to the following statement: for each orbit o ∈
O(MMM,G,H) we have an identity∑

[Z]∈o

n1,[Z] =
∑
[Z]∈o

n2,[Z]. (11)

Below we will need the following elementary fact whose proof is left as an
exercise.

Fact 7 Let k̄ be an algebraic closure of k. Then for an absolutely simple left
MMM-module Z of finite dimension we have the following disjoint two possibil-
ities:

(a) If the image of MMM(k̄) in EndEndEnd(Z)(k̄) is finite, then there exists n ∈ N∗

such that the left MMM-modules Z and Z(σn) are isomorphic.
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(b) If the image ofMMM(k̄) in EndEndEnd(Z)(k̄) is infinite, then there exists n ∈ N∗

such that for each integer m ≥ n there exists no left MMM-module W such that
Z and W (σm) are isomorphic.

Lemma 6 To prove that the identity (11) holds we can assume that for each
o ∈ O(MMM,G,H), every simple left MMM-module Z with [Z] ∈ o is absolutely
simple.

Proof: Let k′ be a finite Galois extension of k such that each simple factor of
a composition series of either the leftMMMk′-module k′⊗kLLL1 or of the leftMMMk′-
module k′ ⊗kLLL2 is absolutely simple. To prove the lemma it suffices to show
that if the Equation (11) holds in the case when the pair (k,O(MMM,G,H)) is
replaced by the pair (k′, O(MMMk′ , Gk′ , Hk′)), then the Equation (11) holds as
well.

If [Z] ∈ o ∈ O(MMM,G,H), then k′⊗k Z is a direct sum of absolutely simple
left MMMk′-modules. It is well known that we can write

k′ ⊗k Z = ⊕uZ
j=1mZZ

′
j,

where uZ ,mZ ∈ N∗ and where the Z ′
j’s are absolutely simple left MMMk′-

module that are not pairwise isomorphic and such that the Galois group
Gal(k′/k) acts transitively on the set {Z ′

1, . . . , Z
′
uZ
}. We consider the orbit

o′ ∈ O(MMMk′ , Gk′ , Hk′) such that [Z ′
1] ∈ o′. Let IZ′

1
be the nonempty subset

of {1, . . . , uZ} formed by all those elements j such that [Z ′
j] ∈ o′ and let

sZ ∈ N∗ be the number of elements of IZ′
1
. It is easy to see that uZ , mZ , and

sZ depend only on the orbit o and not on the choice of Z with the property
that [Z] ∈ o. Thus we can define uo = uZ , mo = mZ , and so = sZ .

We note that if [Z1] ∈ o′ ∈ O(MMM,G,H) and o′ ̸= o and if we similarly
write

k′ ⊗k Z1 = ⊕uZ1
j=1mZ1Z

′
1,j,

then for all j ∈ {1, . . . , uZ} and j1 ∈ {1, . . . , uZ1} the orbits in O(MMMk′) to
which Z ′

j and Z ′
1,j1

belong are distinct. This is so as for all a, b ∈ Z, the k-

vector space HomMMM(Z(σa), Z
(σb)
1 ) is nonzero if and only if the k′-vector space

HomMMM ′
k
((k′ ⊗k Z)

(σa), (k′ ⊗k Z1)
(σb)) is nonzero.

We write [(k′⊗kLLL1)
∨] =

∑
[Z′]∈S(MMMk′ )

n1,[Z′][Z
′] ∈ K0(MMMk′) and [k′⊗kLLL2] =∑

[Z′]∈S(MMMk′ )
n2,[Z′][Z

′] ∈ K0(MMMk′), where each ni,[Z′] ∈ N and all but a finite
number of the ni,[Z′]’s being zero. Based on the last two paragraphs we get
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that for i ∈ {1, 2} we have∑
[Z′]∈o′

ni,[Z′] = moso
∑
[Z]∈o

ni,[Z]. (12)

As we have assumed that the Equation (11) holds in the case when the
pair (k,O(MMM,G,H)) is replaced by the pair (k′, O(MMMk′ , Gk′ , Hk′)), we have∑

[Z′]∈o′ n1,[Z′] =
∑

[Z′]∈o′ n2,[Z′]. From this and the Equation (12) we get that

the Equation (11) holds. □

5.1 Step 1: reduction to the case of a finite field

In this subsection we show that to prove (11) for all orbits o ∈ O(MMM,G,H) we
can assume that k is a finite field. Based on Lemma 6 we can assume that each
simple factor of a composition series of either LLL1 or LLL2 is absolutely simple.
Let R be a finitely generated Fp-subalgebra of k such that the following five
properties hold for it:

(i) There exist a truncated Barsotti–Tate group G of level m over R and a
finite flat commutative group scheme H over R annihilated by pm such that
G = Gk and H = Hk.

(ii) The reduced scheme EndEndEnd(G)red ×R EndEndEnd(H)oppred is a smooth subgroup
scheme of EndEndEnd(G)×REndEndEnd(H)opp; letMMM be the multiplicative monoid scheme
over R associated to the reduced ring scheme EndEndEnd(G)red ×R EndEndEnd(H)oppred .

(iii) The reduced scheme HomHomHom(G,H)red ×R HomHomHom(H,G)red is a smooth
subgroup scheme of HomHomHom(G,H) ×R HomHomHom(H,G); let LLL1 and LLL2 be the Lie
algebras over R of HomHomHom(G,H)red and HomHomHom(H,G)red (respectively) and let
LLL∨

1 = HomR(LLL1,R) be the R-dual of the R-module LLL1.

(iv) The left MMM-modules LLL∨
1 and LLL2 have a composition series whose

factors Z1,1, . . . ,Z1,s1 and Z2,1, . . . ,Z1,s2 (respectively) have absolutely simple
fibers and are defined by free R-modules.

(v) If j1, j2 ∈ {(1, 1), . . . , (1, s1), (2, 1), . . . , (2, s2)} are distinct elements
such that the simple left MMM -modules Zj1 ⊗R k and Zj2 ⊗R k have different
images in K0(MMM)/I0(MMM) (equivalently, if [Zj1 ⊗R k] and [Zj2 ⊗R k] do not
belong to the same orbit of O(MMM)), then there exists a maximal ideal i of R
such that the absolutely simple left MMM/iMMM-module Zj1/iZj1 is not isomor-

phic to (Zj2/iZj2)
(σi

l ) for all i ∈ N, where σl is the Frobenius automorphism
of the finite field l = R/i.
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The existence of R such that properties (i) to (iv) hold is a standard piece
of algebraic geometry. Based on the Fact 7, there exists nG,H ∈ N∗ such that
the property (v) holds if and only if the following property holds:

(v-) If j1, j2 are as in the property (v), then there exists a maximal
ideal i of R such that the left MMM/iMMM-module Zj1/iZj1 is not isomorphic

to (Zj2/iZj2)
(σi

i ) for all i ∈ {0, 1, . . . , nG,H}.

But by localizing R we can assume that the property (v-) holds for all
maximal ideals of R and therefore we can indeed choose R such that the
properties (i) to (v) hold.

We have an inective pullback map O(MMM,G,H) ↪→ O(MMM/iMMM), cf. prop-
erties (iv) and (v). Thus to prove that (11) holds it suffices to show that
Equation (11) holds in the case when the pair (k,O(MMM,G,H)) is replaced
by the pair (l, O(MMM/iMMM,Gl,Hl)). Therefore to prove that the Equation (11)
holds we can assume that k = l is a finite field.

5.2 Step 2: reduction to the case of abstract monoids

As k is finite, we can assume that (R,LLL1,LLL2) = (k,LLL1,LLL2) and thus that
LLL∨

1 and LLL2 have composition series whose factors are denoted as above by
Z1,1, . . . ,Z1,s1 and Z2,1, . . . ,Z1,s2 (respectively).

To prove that the Equation (11) holds we can replace the finite field k by
a finite field extension of it (cf. Lemma 6). Thus we can assume that the
following two properties also hold:

(i) for each element j ∈ {(1, 1), . . . , (1, s1), (2, 1), . . . , (2, s2)}, Zj is an
absolutely simple left MMM(k)-module;

(ii) for each distinct elements j1, j2 ∈ {(1, 1), . . . , (1, s1), (2, 1), . . . , (2, s2)},
[Zj1 ] and [Zj2 ] belong to the same orbit o ∈ O(MMM,G,H) if and only if Zj1 and
Zj2 belong to the same orbit of the natural (analogous) action of σ on the
set of isomorphism classes of finite dimensional simple left MMM(k)-modules.

Let the groups K0(MMM(k)), I0(MMM(k)), K0(MMM(k))/I0(MMM(k)) and the set
O(MMM(k), G,H) ⊂ O(MMM(k)) be analogues to the groups K0(MMM), I0(MMM),
K0(MMM)/I0(MMM) and the set O(MMM,G,H) ⊂ O(MMM(k)) (respectively) but work-
ing in the category of finite dimensional k-vector spaces which are left mod-
ules over the abstract monoid MMM(k). We have an injective pullback map
O(MMM,G,H) ↪→ O(MMM(k), G,H), cf. properties (i) and (ii). Thus to prove
that the Equation (11) holds it suffices to show that it holds in the case when
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the pair (MMM,O(MMM,G,H)) is replaced by the pair (MMM(k), O(MMM(k), G,H)).
Therefore to prove that the Equation (11) holds we can assume that k
is a finite field and we are viewing LLL∨

1 and LLL2 as left modules over the
abstract monoid MMM(k) = End(G) × End(H)opp = End(G) × End(Ht) =
EndEndEnd(G)red(k)×EndEndEnd(H)oppred (k) = EndEndEnd(G)red(k)×EndEndEnd(Ht)red(k); to emphasize
the Fp-algebra structures we will denote AAAG = End(G) and AAAHt = End(Ht)
viewed as finite dimensional Fp-algebras.

The left modules LLL∨
1 and LLL2 over the abstract monoid End(G) × {1Ht}

are actually left AAAG-modules and for each h ∈ End(H)opp = End(Ht) the
multiplication by (1G, h) on LLL∨

1 and LLL2 are AAAG-linear transformations. Simi-
larly, the left modules LLL∨

1 and LLL2 over the abstract monoid {1G} × End(Ht)
are actually left AAAHt-modules and for each g ∈ End(G) the multiplication
by (g, 1Ht) on LLL∨

1 and LLL2 are AAAHt-linear transformations. From the last two
we get that LLL∨

1 and LLL2 have composition series which are also series of left
AAAG-modules and left AAAHt-modules, and therefore we can assume that Zj

with j ∈ {(1, 1), . . . , (1, s1), (2, 1), . . . , (2, s2)} are left AAAG-modules and left
AAAHt-modules with the property that the identity elements of AAAG and AAAHt

act identically on them.

5.3 Step 3: applying Theorem 2

We consider the Jacobson radical J(AAAG) of AAAG. The quotient ring SSSG =
AAAG/J(AAAG) is semisimple and thus a finite product SSSG =

∏s
i=1SSSG,i of simple

rings. Each idempotent of AAAG/J(AAAG) lifts to an idempotent of AAAG and thus
we can assume that we have a product decomposition

AAAG =
s∏

i=1

AAAG,i (13)

of Fp-algebras such that for each i ∈ {1, . . . , s} we have a canonical identi-
fication SSSG,i = AAAG,i/J(AAAG,i). To the decomposition (13) corresponds prod-
uct decompositions G =

∏s
i=1Gi, HomHomHom(G,H) =

∏s
i=1HomHomHom(Gi, H), and

HomHomHom(H,G) =
∏s

i=1HomHomHom(H,Gi). Thus to prove that Theorem 3 holds
(equivalently that the Equation (11) holds in the case when the initial pair
(MMM,O(MMM,H,G)) is replaced by the pair (MMM(k), O(MMM(k), G,H))) we can as-
sume that s = 1 and therefore that SSSG is a simple Fp-algebra.

A similar argument shows that we can assume that SSSHt = AAAHt/J(AAAHt)
is also a simple Fp-algebra. But in such a case, up to isomorphism there
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exists a unique simple left MMM(k)-module on which the identity elements of
both AAAG and AAAHt act identically and therefore the analogue of the Equation
(11) for the case when the pair (MMM,O(MMM,G,H)) is replaced by the pair
(MMM(k), O(MMM(k), G,H)) becomes the identity dimk(LLL

∨
1 ) = dimk(LLL2) which is

equivalent to the Equation (1) as dimk(LLL
∨
1 ) = dimk(LLL1) = dim(HomHomHom(G,H))

and dimk(LLL2) = dim(HomHomHom(H,G)). This ends the proof of Theorem 3. □

5.4 Remark

The ring scheme EndEndEnd(G) has EndEndEnd(G)0 as a two-sided ideal subscheme and
the quotient ring scheme CCCG = EndEndEnd(G)/EndEndEnd(G)0 = EndEndEnd(G)red/EndEndEnd(G)0red
is étale. From [GV], Corollary 6 (b) we get that AutAutAut(G)0(k) = 1M +
EndEndEnd(G)0(k). From this and the fact that AutAutAut(G)0red is a unipotent group
scheme (cf. [GV], Corollary 5), we get that there exists a composition series
of the Wm(k)-module M which is left invariant by all crystalline realiza-
tions of elements of EndEndEnd(G)0(k) and whose simple factors are one dimen-
sional k-vector spaces annihilated by all crystalline realizations of elements
of EndEndEnd(G)0(k). Thus there exists u ∈ N∗ with the property that each prod-
uct of arbitrary u endomorphisms of the Dieudonné module M of G that are
crystalline realizations of elements ofEndEndEnd(G)0(k), is zero. For v ∈ {1, . . . , u},
let Mv be the Wm(k)-submodule of M generated by all (f1f2 · · · fv)(M) with
f1, . . . , fv as Wm(k)-endomorphisms of M that are crystalline realizations of
elements of EndEndEnd(G)0(k). We obtain a filtration

0 = Mu ⊂ Mu1 ⊂ · · · ⊂ M1 ⊂ M

by Wm(k)-submodules left invariant by all crystalline realizations of elements
of EndEndEnd(G)0(k) whose factors are annihilated by all crystalline realizations of
elements of EndEndEnd(G)0(k). This implies that EndEndEnd(G)0red acts trivially on each
Zj with j ∈ {(1, 1), . . . , (1, s1), (2, 1), . . . , (2, s2)}. Therefore Zj is a left CCCG-
module.

If H is also a truncated Barsotti–Tate group, then as in the previous
paragraph we argue that EndEndEnd(G)0red ×EndEndEnd(Ht)0red acts trivially on each Zj

and therefore Zj is a left CCCG-module as well as a left CCCHt-module; thus in
such a case the three steps above could be easily combined with AAAG and AAAHt

being replaced by the étale ring schemes CCCG and CCCHt .
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6 Isogeny and Symmetry Properties in the

Relative Context

Let L be the (contravarint) Dieudonné module of a Barsotti–Tate group D
over k. In order to match our notations with the ones of [GV] (modulo the
replacement of M by L), let ϕ : L → L and ϑ : L → L be the σ-linear
map and the σ−1-linear map (respectively) such that for each x ∈ L we
have ϕ(x) = Fx and ϑ(x) = V x. We denote also by ϕ : EndB(k)(L[

1
p
]) →

EndB(k)(L[
1
p
]) the σ-linear automorphism induced naturally by ϕ: it maps

h ∈ EndB(k)(L[
1
p
]) to ϕ ◦ h ◦ ϕ−1 ∈ EndB(k)(L[

1
p
]). Therefore ϕ(h) = 1

p
FhV .

Let G be a smooth closed subgroup scheme of GLGLGLGLGLGLGLGLGLL such that its generic
fiber GB(k) is connected. Thus the scheme G is integral. Let g := Lie(G) be
the Lie algebra of G. Until the end we will assume that the following two
axioms introduced in [GV], Section 6 hold for the triple (L, ϕ,G):

(AX1) the Lie subalgebra g[1
p
] of EndW (k)(L)[

1
p
] is stable under ϕ, i.e., we

have ϕ(g[1
p
]) = g[1

p
];

(AX2) there exist a direct sum decomposition L = F 1 ⊕ F 0 such that
the following two properties hold:

(a) the kernel F̄ 1 of the reduction modulo p of ϕ is F 1/pF 1;
(b) the cocharacter µ : Gm → GLGLGLGLGLGLGLGLGLL which acts trivially on F 0 and via the

inverse of the identical character of Gm on F 1, normalizes G.
The triple (L, ϕ,G) is called an F -crystal with a group over k, cf. [V1],

Definition 1.1 (a) and Subsection 2.1. Let nG
D be the smallest nonnegative

integer that has the following property: for each element g̃ ∈ G(W (k)) con-

gruent to 1L modulo pn
G
D , there exists an inner isomorphism between (L, ϕ,G)

and (L, g̃ϕ,G). The existence of nG
D is implied by [V1], Main Theorem A. If

G = GLGLGLL, then we have nG
D = nD (see [GV], Subsection 5.1).

For m ∈ N∗ let ϕm, ϑm be the reductions modulo pm of ϕ and ϑ (respec-
tively). Let ♭(σ) be the pullback (or the tensorization) of some W (k)-linear
map or W (k)-module ♭ with σ. Thus L(σ) := W (k)⊗σ,W (k) L, etc.

Definition 4 (a) By the family of F -crystals with a group over k associated
to (L, ϕ,G) we mean the set F of all F -crystals with a group over k of the
form (L, gϕ,G) with g ∈ G(W (k)).

(b) For g1, g2 ∈ G(W (k)) we say that (L, g1ϕ,G) and (L, g2ϕ,G) are G-
isogeneous if there exists an element h ∈ G(B(k)) such that hg1ϕ = g2ϕh.

31



For g ∈ G(W (k)) letDg be the Barsotti–Tate group over k whose Dieudonné
module is (L, gϕ, ϑg−1); it has the same dimension and codimension as D.
Note that D = D1L . Moreover, if G = GLGLGLL, then each Barsotti–Tate group
over k of the same dimension and codimension as D is isomorphic to Dg for
some g ∈ G(W (k)).

Let gm ∈ G(Wm(k)) be the reduction modulo pm of g. Let

HomHomHom(D[pm], Dg[p
m])crys

be the group scheme over k of endomorphisms from (L/pmL, gmϕm, ϑmg
−1
m )

to (L/pmL, ϕm, ϑm). Thus, if R is a commutative k-algebra and if σR is
the Frobenius endomorphism of the ring Wm(R) of p-typical Witt vectors of
length m with coefficients in R, thenHomHomHom(D[pm], Dg[p

m])crys(R) is the group
of those Wm(R)-linear endomorphisms ♮ of Wm(R)⊗Wm(k)L/p

mL that satisfy
the identities (1Wm(R) ⊗ ϕm) ◦ ♮(σ) = ♮ ◦ (1Wm(R) ⊗ gmϕm) and ♮(σ) ◦ (1Wm(R) ⊗
ϑmg

−1
m ) = (1Wm(R) ⊗ ϑm) ⊗ ♮; here ϕm and ϑm are viewed as Wm(k)-linear

maps (L/pmL)(σ) → L/pmL and L/pmL → (L/pmL)(σ) (respectively).
We consider the closed subgroup scheme

HomHomHom(D[pm], Dg[p
m])Gcrys

of HomHomHom(D[pm], Dg[p
m])crys such that for each commutative k-algebra R, the

subgroup HomHomHom(D[pm], Dg[p
m])Gcrys(R) ofHomHomHom(D[pm], Dg[p

m])crys(R) consists
of all those Wm(R)-linear endomorphisms ♮ of Wm(R) ⊗Wm(k) L/p

mL which
in fact are elements of Wm(R) ⊗Wm(k) g/p

mg. The goal of this section is to
prove the following theorem that generalizes the particular case of Theorem
1 in which D and E have the same dimension and codimension.

Theorem 4 For each g ∈ G(W (k)) the following three properties hold:

(a) There exists a smallest nonnegative integer nG
D,Dg

such that for all

integers n ≥ nG
D,Dg

we have an equality

dim(HomHomHom(D[pn], Dg[p
n])Gcrys) = dim(HomHomHom(D[p

nG
D,Dg ], Dg[p

nG
D,Dg ])Gcrys).

Moreover, if nG
D,Dg

> 0, then the finite sequence

(dim(HomHomHom(D[pn], Dg[p
n])Gcrys))n∈{1,...,nG

D,Dg
}

is strictly increasing.
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(b) If sGD,Dg
= dim(HomHomHom(D[p

nG
D,Dg ], Dg[p

nG
D,Dg ])Gcrys), then sGD,Dg

is an
isogeny invariant. In other words, for all elements g1, g2 ∈ G(W (k)) such
that (L, g1ϕ,G) and (L, g2ϕ,G) are G-isogeneous to (L, ϕ,G) and (L, gϕ,G)
(respectively), we have sGD,Dg

= sGDg1 ,Dg2
.

(c) Let Tr : EndW (k)(L)× EndW (k)(L) → W (k) be the trace bilinear map
that maps a pair (a, b) ∈ EndW (k)(L)×EndW (k)(L) to the trace of the W (k)-
linear endomorphism a ◦ b : L → L. We assume that Tr restricts to a perfect
bilinear map Trg : g×g → W (k) (this forces G to be a reductive group scheme
over W (k)). Then we have the following symmetry properties sGD,Dg

= sGDg ,D

and nG
D,Dg

= nG
Dg ,D

.

Proof: Let L1 and L2 be L. Let E = D ⊕ Dg; it is a Barsotti–Tate group
over k whose Dieudonné module is (L⊕ L, ϕ⊕ gϕ) = (L1 ⊕ L2, ϕ⊕ gϕ). Let
h be the Lie subalgebra of EndW (k)(L ⊕ L) = EndW (k)(L1 ⊕ L2) formed by
all those W (k)-linear endomorphisms of L ⊕ L = L1 ⊕ L2 which annihilate
L1, which map L2 into L1, and for which the resulting W (k)-linear map from
L2 = L to L1 = L is an element of g.

Let H be the closed subgroup scheme of GLGLGLL⊕L with the property that
for each commutative k-algebra R, we have

H(R) = 1W (R)⊗W (k)(L⊕L) +W (R)⊗W (k) h.

The Lie algebra of H is h and the triple (L ⊕ L, ϕ ⊕ gϕ,H) is an F -crystal
with a group over k.

Form ∈ N∗ letAutAutAut(D[pm]⊕Dg[p
m])Hcrys be the group scheme over k defined

in [GV], Definition 2 (a). We have a canonical identification

HomHomHom(D[pm], Dg[p
m])Gcrys = AutAutAut(D[pm]⊕Dg[p

m])Hcrys (14)

of affine group schemes over k, which for a commutative k-algebra Rmaps ♮ ∈
HomHomHom(D[pm], Dg[p

m])Gcrys(R) to 1W (R)⊗W (k)(L⊕L)+♮, where ♮ is identified with a
Wm(R)-linear endomorphism ofWm(R)⊗Wm(k)(L⊕L) = Wm(R)⊗Wm(k)(L1⊕
L2) which annihilates Wm(R)⊗Wm(k) L1 and which maps Wm(R)⊗Wm(k) L2

to Wm(R)⊗Wm(k) L1 in the same way as ♮ does.
As the product of two elements of h is 0, W (k)1L+h is a W (k)-subalgebra

of EndW (k)(L⊕L) and therefore the hypothesis of [GV], Theorem 6 holds for
the triple (L⊕ L, ϕ⊕ gϕ,H). Therefore the fact that (a) holds follows from
[GV], Proposition 2 (c) and Theorem 6 and the Equation (14).
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In order to prove (b) and (c), we can assume that k is algebraically closed
and we first consider the σ-linear isomorphisms

ϕD,Dg , ϕDg ,D : g[
1

p
] → g[

1

p
]

which map h ∈ g[1
p
] to ϕ ◦ h ◦ ϕ−1g−1 and gϕ ◦ h ◦ ϕ−1 (respectively). For all

x, y ∈ EndW (k)(L) we have an identity

σ(Tr(x, y)) = Tr(ϕD,Dg(x), ϕDg ,D(y)). (15)

Thus the fact that Trg is perfect implies that Trg induces an isomorphism of
latticed F -isocrystals from the dual of (g, ϕDg ,D) to (g, ϕD,Dg). Based on this,
the proofs of (b) and (c) are entirely analogous to the proofs of Subsections
3.1 and 3.2, with the roles of L and J being replaced by L = L1 and L = L2

(respectively) and with the roles of HomW (k)(J, L) and HomW (k)(L, J) being
replaced by the Lie subalgebra g of EndW (k)(L) = HomW (k)(L2, L1) and
of EndW (k)(L) = HomW (k)(L1, L2) (respectively). We would only like to
add that, due to the axiom (AX1), with the notations HomW (k)(J, L)

♭ and
HomW (k)(J, L)

♯ of Subsections 3.1 and 3.2 but used under the mentioned
replacement of roles, for ⋄ ∈ {{Dg, D}, {D,Dg}} we take g♭⋄ to be

g ∩ HomW (k)(L2, L1)
♭ = {x ∈ g|ϕ⋄(x) ∈ HomW (k)(L2, L1)} = g ∩ ϕ−1

⋄ (g)

and we take g♯⋄ to be

g[
1

p
] ∩ HomW (k)(L2, L1)

♯ = g+ (g[
1

p
] ∩ ϕ⋄(HomW (k)(L2, L1))) = g+ ϕ⋄(g).

Note that the dual of g♯D,Dg
is g♭Dg ,D

. □
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[I] L. Illusie, Déformations de groupes de Barsotti–Tate (d’apès
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