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For her senior year in high school, the first author signed up to take the

newly created, Science Research Class. This class was designed for students

with a passion for a specific subject area, and with the desire to discover more

about it. Elizabeth’s passion is mathematics. The class instructors, with the

help of Prof. Kenneth McLeod, State University of New York at Bingham-

ton, paired each student with a SUNY-B professor. The two authors of this

article were paired in that way and decided to work on a specific mathemat-

ical project. For this project, we studied some non-Euclidean (hyperbolic)

geometry and group theory (the algebra of symmetry). M.C. Escher’s ([1])

intriguing pictures of hyperbolic geometry ([3]) inside of a circle motivated us

to study these subjects, which go far beyond the usual Euclidean geometry

and algebra learned in high school. Looking past the artistic decorations of

Escher’s Circle Limit IV, for example, one sees a tessellation of the hyper-

bolic plane into congruent triangles. The interior angles, π
r
, π
s
, π
t
, of each

triangle add up to less than π radians.

Through reflections in the sides of such triangles as mentioned above,

several examples of groups can be generated. We studied such hyperbolic

triangle groups, denoted by T (r, s, t), through the utilization of 2×2 matrices

and the corresponding linear fractional maps of the complex numbers. Our

goal was to discover the three generators of the hyperbolic triangle groups
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as explicit 2 × 2 matrices using basic geometry and some calculus. In this

article we show how this was accomplished for the specific examples T (3, 4, 3),

T (3, 4, 4), and T (3, 4, 5).

Definition of a Group

A group G is a set closed under an operation, denoted by •, that is, • :

G × G → G and G × G = {(g1, g2) | g1, g2 ∈ G}, such that the following

properties are satisfied: the operation is associative, “There exists an identity

element” ∃e ∈ G such that e • g = g = g • e, “for all” ∀g ∈ G, ∃g−1 ∈ G such

that g • g−1 = e = g−1 • g. Some examples of sets are: the natural numbers

N = {0, 1, 2, 3, · · · }, the integers Z = {· · · ,−2,−1, 0, 1, 2, · · · }, the even

integers 2Z = {2n | n ∈ Z} = {m ∈ Z | m is even}, the rational numbers

Q = {m
n
|m,n ∈ Z, n 6= 0}, and the real numbers R = {m.d1d2d3 · · · | m ∈

Z, 0 ≤ di ≤ 9, 1 ≤ i ∈ N}. Under the operation of addition, +, all of

these examples, except N are groups. Each group has its own notation which

includes its operation and identity element, and in general the notation is

(G, •, e). Some specific examples include the integers under addition (Z,+, 0)

and the nonzero rational numbers under multiplication (Q− {0}, ·, 1).

Group Acting on a Set

A group may act on a set as follows. Let (G, ·, e) be a group and S be a set.

G will act on S when we have a function • : G× S → S. The domain is the

set of ordered pairs, the Cartesian product G × S = {(g, s) | g ∈ G, s ∈ S}
and we write the function as •(g, s) = g • s. For G to act on S, the following

conditions must be satisfied: 1. ∀g1, g2 ∈ G, ∀s ∈ S, we have (g1 • (g2 • s)) =

(g1 ·g2)•s, and 2. ∀s ∈ S, e•s = s. For example, G = Z×Z is a group where

the operation addition is given by (m1, n1) + (m2, n2) = (m1 + m2, n1 + n2)

so the identity element is (0, 0). Also, we have the additive inverse of (m,n)

is (−m,−n) ∈ Z × Z since (m,n) + (−m,−n) = (0, 0). This operation is
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associative

((m1, n1) + (m2, n2)) + (m3, n3) = ((m1 +m2) +m3, (n1 + n2) + n3)

= (m1 + (m2 +m3), n1 + (n2 + n3)) = (m1, n1) + ((m2, n2) + (m3, n3))

because of the associative property of addition in Z. G = Z × Z acts on

S = R× R by:

(m,n) • (x, y) = (m+ x, n+ y).

This is an action because it satisfies

(m1, n1) • ((m2, n2) • (x, y)) = (m1, n1) • (m2 + x, n2 + y)

= (m1 + (m2 + x), n1 + (n2 + y)) = ((m1 +m2) + x), (n1 + n2) + y))

= (m1 +m2, n1 + n2) • (x, y) = ((m1, n1) + (m2, n2)) • (x, y)

and (0, 0) • (x, y) = (0 + x, 0 + y) = (x, y). Another example of a group

acting on a set is the group of symmetries of a Euclidean equilateral triangle

where the group operation is composition of functions. This group consists of

flips (mirror reflections) and rotations of 120 degrees, acting on the triangle.

Doing a sequence of flips and/or rotations in different orders can give different

results.

Equivalence Relation on a Set, and Equivalence Classes

We now discuss what it means to have a relation on a set. Let S be a

set, then a relation on S is a subset R ⊆ S × S so we say s1, s2 ∈ S are

R related if (s1, s2) ∈ R. A notation for this relation would be s1 ∼ s2

when (s1, s2) ∈ R. For example, “Equality”, denoted =, is the relation

E = {(s, s) | s ∈ S}. Three possible properties of a relation are as follows:

∀s1, s2, s3 ∈ S, 1. Reflexive: s1 ∼ s1, 2. Symmetric: if s1 ∼ s2 then s2 ∼ s1,

3. Transitive: if s1 ∼ s2 and s2 ∼ s3 then s1 ∼ s3 . A relation is an

equivalence relation when it is reflexive, symmetric, and transitive. Given a

set with an equivalence relation ∼, define the equivalence class of an element

s ∈ S to be [s] = {x ∈ S | x ∼ s}, and note that all elements of an equivalence
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class are ∼ related to each other. Then any two equivalence classes are either

identical or disjoint, and S is the disjoint union of its distinct equivalence

classes.

Orbits of a Group Acting on a Set as Equivalence Classes

Suppose group G acts on set S. There is an equivalence relation ∼ defined

on S by saying s1 ∼ s2 when g • s1 = s2 for some g ∈ G. Under that relation

an equivalence class is also called an orbit, and the orbit of s is denoted by

Os = {g • s ∈ S | g ∈ G}. Any two elements in the same orbit are related to

each other. An example of an orbit, where G = Z×Z acting on S = R×R,

is

O(0,0) = {(m,n) • (0, 0) | m,n ∈ Z} = {(m,n) | (m,n) ∈ Z× Z}
= Z× Z = O(a,b), ∀a, b ∈ Z,

and another orbit is

O(1/2,3/4) = {(1

2
+m,

3

4
+ n) | m,n ∈ Z} = O(a+1/2,b+3/4), ∀a, b ∈ Z.

Denote by S/∼ the set of equivalence classes, so S/∼ = {Os | s ∈ S} is the

set of orbits. A fundamental domain is a subset of S consisting of exactly one

element from each orbit. For G = Z×Z acting on S = R×R, a fundamental

domain is {(x, y) | 0 ≤ x < 1, 0 ≤ y < 1}, so that S/∼ is a torus T 2 = S1×S1.

Complex Numbers

A group that is significant to the project is the complex numbers, C = {z =

a+ bi | a, b ∈ R}. The real part of z is Re(z) = a and the imaginary part of

z is Im(z) = b. The complex numbers have operations + and · defined by :

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i.
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These equations follow from the usual algebraic laws obeyed by these oper-

ations, so they are commutative, associative, and distributive, and i2 = −1.

The group of real numbers is a subset of the group of complex numbers

(R ⊂ C). A complex conjugation can be defined as the function − : C → C
where its value on z is z̄ = a− bi. So z · z̄ = (a+ bi) · (a− bi) = a2 + b2 ≥ 0

and z · z̄ = 0 iff z = 0. When z 6= 0 then z ·
(

z̄
a2+b2

)
= z·z̄

a2+b2
= 1, so

z−1 = z̄
a2+b2

∈ C.

2x2 Matrices, Determinants, and Matrix Multiplication

Certain groups of 2× 2 matrices will be used in this project. Let

R2×2 =

{
A =

[
a b

c d

] ∣∣∣∣ a, b, c, d ∈ R

}

be the set of all 2× 2 real matrices. For any such A, the determinant of A is

defined to be detA = ad− bc. The special linear group is

SL(2,R) = {A ∈ R2×2 | det A = 1}.

The general linear group is

GL(2,R) = {A ∈ R2×2 | det A 6= 0}.

In between these two are the groups

SL±1(2,R) = {A ∈ R2×2 | det A = ±1}

and

GL>0(2,R) = {A ∈ R2×2 | det A > 0}.

Let B =

[
α β

γ δ

]
and define the matrix product of A and B to be

AB =

[
a b

c d

][
α β

γ δ

]
=

[
(aα + bγ) (aβ + bδ)

(cα + dγ) (cβ + dδ)

]
∈ R2×2.
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Also define rA =

[
ra rb

rc rd

]
∈ R2×2 for any r ∈ R.

To see why all of these sets are groups, first we check associativity of

matrix multiplication, which can be proven directly from the definition. For

any, A,B,C ∈ R2×2 we have

(AB)C =

([
a b

c d

][
α β

γ δ

])[
w x

y z

]

=

[
(aα + bγ) (aβ + bδ)

(cα + dγ) (cβ + dδ)

][
w x

y z

]

=

[
(aα + bγ)w + (aβ + bδ)y (aα + bγ)x+ (aβ + bδ)z

(cα + dγ)w + (cβ + dδ)y (cα + dγ)x+ (cβ + dδ)z

]

=

[
(aαw + bγw + aβy + bδy) (aαx+ bγx+ aβz + bδz)

(cαw + dγw + cβy + dδy) (cαx+ dγx+ cβz + dδz)

]

and we have

A(BC) =

[
a b

c d

]([
α β

γ δ

][
w x

y z

])

=

[
a b

c d

][
(αw + βy) (αx+ βz)

(γw + δy) (γx+ δz)

]

=

[
a(αw + βy) + b(γw + δy) a(αx+ βz) + b(γx+ δz)

c(αw + βy) + d(γw + δy) c(αx+ βz) + d(γx+ δz)

]

=

[
(aαw + aβy + bγw + bδy) (aαx+ aβz + bγx+ bδz)

(cαw + cβy + dγw + dδy) (cαx+ cβz + dγx+ dδz)

]
= (AB)C.

To show closure of these sets we will use the following formula true for any
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A,B ∈ R2×2. We have

det(AB) = (aα + bγ)(cβ + dδ)− (aβ + bδ)(cα + dγ)

= aαcβ + aαdδ + bγcβ + bγdδ − aβcα− aβdγ − bδcα− bδdγ
= aαdδ + bγcβ − aβdγ − bδcα
= (ad− bc)(αδ − βγ) = (det A)(det B).

SL(2,R) is closed under matrix multiplication because if det A = 1 = det B

then det(AB) = (1)(1) = 1. GL(2,R) is closed because if det A 6= 0,

det B 6= 0 then det(AB) = (det A)(det B) 6= 0. SL±1(2,R) is closed be-

cause if det A = ±1 and det B = ±1 then det(AB) = (det A)(det B) =

(±1)(±1) = ±1. GL>0(2,R) is closed because if det A > 0 and det B > 0

then det(AB) = (det A)(det B) > 0. The identity element for matrix mul-

tiplication, I =

[
1 0

0 1

]
, is in all four of these sets. To see that these four

sets are groups we only need to check their closure under inverses. If A has

an inverse, A−1, such that AA−1 = I = A−1A, then (det A)(det A−1) =

det(AA−1) = det(I) = 1 so det A 6= 0 and det(A−1) = (det A)−1. Con-

versely, if det A 6= 0 there is a simple formula for the inverse of A, namely,

A−1 =
1

det A

[
d −b
−c a

]
.

If A ∈ G = GL(2,R) then det A 6= 0 so det(A−1) = (det A)−1 6= 0 so

A−1 ∈ GL(2,R). If A ∈ G = SL(2,R) then det A = 1 so det(A−1) =

(det A)−1 = 1 so A−1 ∈ SL(2,R). A ∈ G = SL±1(2,R) then det A = ±1 so

det(A−1) = (det A)−1 = ±1 so A−1 ∈ SL±1(2,R). If A ∈ G = GL>0(2,R)

then det A > 0 so det(A−1) = (det A)−1 > 0 so A−1 ∈ GL>0(2,R). In each

case A−1 ∈ G, so each set is a group.
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Linear Fractional Maps on the Upper Half-Plane

For the project, we will use special functions C→ C called linear fractional

maps. If A ∈ GL(2,R) so ad− bc 6= 0, define the function

fA(z) =
az + b

cz + d
if ad− bc > 0, but fA(z) =

az̄ + b

cz̄ + d
if ad− bc < 0.

We have

Im

(
az + b

cz + d

)
=

(ad− bc)Im(z)

(cz + d)(cz̄ + d)
and Im

(
az̄ + b

cz̄ + d

)
= − (ad− bc)Im(z)

(cz + d)(cz̄ + d)
,

so if Im(z) > 0 then Im(fA(z)) > 0. Therefore, we may consider these as

functions on the upper half plane, fA : H → H where H = {z ∈ C | Im(z) >

0}. Let A,B ∈ GL>0(2,R) with notation as before, so fA(z) = az+b
cz+d

and

fB(z) = αz+β
γz+δ

. Then we can see that fA ◦ fB = fAB by comparing these two

functions;

(fA ◦ fB)(z) = fA(fB(z)) = fA

(
az + b

cz + d

)
=
αaz+b
cz+d

+ β

γ az+b
cz+d

+ δ

=
a(αz + β) + b(γz + δ)

c(αz + β) + (γz + δ)
=

(aα + bγ)z + (aβ + bδ)

(cα + dγ)z + (cβ + dδ)
= f(AB)(z).

If det A < 0 or det B < 0 we still get fA ◦ fB = fAB.

Note that for S =

[
0 1

−1 0

]
and T =

[
1 1

0 1

]
in SL(2,R), we have

fS(z) = −1
z

and fT (z) = z+ 1, so that fS exchanges the interior and exterior

of the unit semicircle, |z| = 1, in H, and fT is horizontal translation by 1. In

fact, S and T are in the group

SL(2,Z) =

{
A =

[
a b

c d

] ∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
.

Furthermore, we see that fA(z) = az+b
cz+d

= −az−b
−cz−d = f−A(z) so A and −A

determine the same map. This can be reflected in the group GL(2,R) by

introducing an equivalence relation A ∼ B when B = ±A, and the resulting

set of equivalence classes is the group PGL(2,R).
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Euclidean and Hyperbolic Triangle Groups

We will now give an example of a Euclidean triangle group acting on R2. For

this example let

Rx

[
x

y

]
=

[
x

−y

]
, Ry

[
x

y

]
=

[
−x
y

]
, and Rz

[
x

y

]
=

[
1− y
1− x

]
,

and note that these are reflections with respect to the lines y = 0, x = 0,

and x+y = 1, respectively. The set of all possible finite sequences of compo-

sitions of these maps is a group, called the group generated by these maps,

and because the generators are reflections in the three sides of a Euclidean

triangle, it is naturally called a Euclidean triangle group. There is a standard

notation for these triangle groups which gives the relations that completely

describe the group. Doing a reflection twice gives the identity map, but the

product of two distinct reflections is a rotation by some angle determined by

the angle between the two sides. For example, the x-axis and the y-axis are

perpendicular, at angle π/2 radians, so the product of the two correspond-

ing reflections, RxRy, is rotation by twice that angle, π radians. Therefore,

(RxRy)
2 is rotation by 2π radians, which is the identity map, providing a

relation in the triangle group. The other relations can be found similarly,

and we find that this particular triangle group has the description

T (2, 4, 4) = 〈Rx, Ry, Rz|R2
x = R2

y = R2
z = (RxRy)

2 = (RxRz)
4 = (RyRz)

4 = I〉.

This is an example of a group, T (2, 4, 4), acting on a set, R2. The elements

of the group reflect the shaded triangle shown in Figure 1 (a fundamental

domain). The entire set R2 is then covered by infinitely many copies of that

triangle, providing a tesselation of the Euclidean plane by those triangles.

Figure 2 illustrates only some of the triangles, giving a partial tesselation of

R2 by this group.

Figure 1: T (2, 4, 4) Fundamental Domain

Figure 2: T (2, 4, 4) Partial Tesselation of R2
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For this project we did analogous calculations with linear fractional maps

for certain hyperbolic triangle groups ([3]) acting on the hyperbolic plane, a

model of hyperbolic geometry explained below. We were inspired by several

beautiful pictures, two of which are shown in Figures 3 and 4. Most of the

background math needed to understand what we did has been explained in

the earlier sections. We still need to discuss the two most common models

for hyperbolic geometry, and then we can find specific matrices in the group

SL±1(2,R) which generate particular hyperbolic triangle groups which give

tesselations of one of those models.

Figure 3: Tesselation of disk by T (3, 4, 5)

Figure 4: Tesselation of disk by T (2, 3,∞)

There are two commonly used models for hyperbolic geometry, one being

the upper half plane H, and the other is the interior of the unit circle in C,

D = {z ∈ C | |z| < 1}. A hyperbolic straight line in H is either a vertical

ray, {x+ iy ∈ H | y > 0} for fixed x ∈ R, or a semicircle C(a, b) = {x+ iy ∈
H | (x−c)2+y2 = r2, y > 0} with center c = a+b

2
, radius r = b−a

2
, touching the

real axis orthogonally at the points a and b in R where a < b. A hyperbolic

straight line in D is either a diameter, {r(cos θ + i sin θ) ∈ D| − 1 < r < 1},
or an arc of a circle meeting the unit circle orthogonally at two points a+ bi

and c + di. Using the tangent lines at these points one finds the center of

such a circle to be 1
ad−bc((d− b) + i(a− c)) and its radius to be

∣∣1−ac−bd
ad−bc

∣∣. The

proof of these results is as follows.

The center of the circle we want is the point where the two tangent lines

meet. Several steps were taken to figure out this point. First, using implicit

differentiation we found the slope of the tangent line at x+ iy to be −x
y

. This

allows us to write the equations of the tangent lines in point-slope form. The

equation of the tangent line at the point a+ bi is y − b = −a
b

(x− a) and the

equation of the tangent line at point c+ di is y − d = −c
d

(x− c). To find the
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center of the circle, we solve for x as shown in the following:

[b− a

b
(x− a)](bd) = [d− c

d
(x− c)](bd)

b2d− ad(x− a) = bd2 − bc(x− c)
b2d− adx+ a2d = bd2 − bcx+ bc2

b2d− bd2 + a2d− bc2 = adx− bcx
(a2 + b2)d− b(c2 + d2) = (ad− bc)x

d− b = (ad− bc)x
d− b
ad− bc

= x

since a2 + b2 = 1 = c2 + d2, and from this we found y = a−c
ad−bc .

All the axioms of Euclidean geometry, except for the parallel postulate,

are satisfied in these two models. But given a line and a point not on it, there

are infinitely many lines through that point parallel to that given line. These

two models are equivalent because they are connected by an invertible linear

fractional map f : H → D where f(z) = i
(
z−i
z+i

)
= w for any z ∈ H can be

associated with the 2×2 complex matrixM = 1√
2

[
i 1

1 i

]
with determinant

−1, and f−1 : D → H where f−1(w) = −i
(
w+i
w−i

)
= z for any w ∈ D can

be associated with the 2 × 2 complex matrix M−1 = 1√
2

[
−i 1

1 −i

]
with

determinant −1. The function f also takes the boundary of H, z ∈ R, to the

boundary of D, |w| = 1, with the understanding that as z → ±∞, f(z)→ i.

In Figures 5 and 6 we see the tesselations of H that correspond to those of

D shown in Figures 3 and 4. Although we have been greatly inspired by

the pictures in D, we will do all the rest of our work in H. The matrices

needed to express the results as groups acting on D can be easily found by

the method just described, but they would involve complex numbers.

Figure 5: Tesselation of H by T (3, 4, 5)

Figure 6: Tesselation of H by T (2, 3,∞)
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Generators for Specific Hyperbolic Triangle Groups

With this background we can now describe the hyperbolic triangle groups

studied in this project. In Figures 7 and 8, one in H and one in D, we see

three hyperbolic straight lines forming a hyperbolic triangle whose angles are
π
2
, π

3
, π
∞ = 0. In this case the triangle includes one point on the boundary.

The group generated by reflections in the three sides of this triangle is the

hyperbolic triangle group

T (2, 3,∞) = 〈R1, R2, R3|R2
1 = R2

2 = R2
3 = (R1R2)2 = (R1R3)3 = I〉.

Figure 7: T (2, 3,∞) Fundamental Domain in H

Figure 8: T (2, 3,∞) Fundamental Domain in D

Note thatR2R3 is not of finite order, that is (R2R3)k 6= I for all 0 < k ∈ Z.

There are three matrices

A1 =

[
0 1

1 0

]
, A2 =

[
1 0

0 −1

]
, A3 =

[
−1 1

0 1

]

in SL±1(2,R) corresponding to maps on H

fA1(z) =
1

z̄
, fA2(z) = −z̄, fA3(z) = 1− z̄,

that are generators of T (2, 3,∞) on H. For A ∈ SL±1(2,R), the linear

fractional map gB : D → D corresponds to fA : H → H when gB(w) =

f(fA(f−1(w))). In the case when A = A1 we get gB1(w) = w̄ = iw̄+0
0w̄+i

which is

associated with the matrix B1 =

[
i 0

0 i

]
having det B1 = −1 , and this is

clearly reflection with respect to y = 0 in D. In the case when A = A2 we get

gB2(w) = −w̄ = 1w̄+0
0w̄−1

which is associated with the matrix B2 =

[
1 0

0 −1

]
having det B2 = −1, and this is reflection with respect to x = 0 in D.

In the last case when A = A3 we get gB3(w) = −w̄ = (i+2)w̄−1
1w̄+(i−2)

which we
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associate with the matrix B3 =

[
i+2
2

−1
2

1
2

i−2
2

]
having det B3 = −1, and this

is reflection with respect to the hyperbolic line labeled R3 in Figure 8. Note

that Bj, j = 1, 2, 3, are in the group

SL±1(2,C) =

{
B =

[
α β

γ δ

]
∈ C2×2

∣∣∣∣ det B = ±1

}
.

Inversion with respect to a semicircle C(a, b) inH is given in the following.

Theorem 1. Let a < b ∈ R, r = b−a
2

, c = a+b
2

, C(a, b) = {x + iy ∈

H|(x − c)2 + y2 = r2, y > 0} and ρ(a, b) = 1
b−a

[
a+ b −2ab

2 −a− b

]
=

1
r

[
c r2 − c2

1 −c

]
. Then inversion with respect to C(a, b) in H is the lin-

ear fractional map fρ(a,b)(z) = cz̄+(r2−c2)
z̄−c .

Proof. First consider the special case a = −r, b = r giving a circle of

radius r centered at 0. This is obtained by stretching[
r 0

0 1

][
0 1

1 0

][
r−1 0

0 1

]
=

[
0 r

r−1 0

]
= ρ(−r, r),

from A1 where a = −1, b = 1. The general case follows by using translation

Tc =

[
1 c

0 1

]
. We have

[
1 c

0 1

][
0 r

r−1 0

][
1 −c
0 1

]
=

[
cr−1 r

r−1 0

][
1 −c
0 1

]

=

[
cr−1 −c2r−1 + r

r−1 −cr−1

]
=

1

r

[
c r2 − c2

1 −c

]
= ρ(a, b). �

The goal of this project is to find matrices that generate the hyperbolic

triangle groups T (3, 4, t) for t = 3, 4, 5, in H. We keep A2 corresponding to

line R2 in Figure 7 as one side. Next we find a hyperbolic line C1 = C(a, b)

passing through the point i whose angle with R2 = C2 is π
4

at that point.
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The equation of such a circle is (x − c)2 + y2 = r2, and the slope of a

tangent line to it at x + iy is dy
dx

= c−x
y

. We want that slope to be −1

when x = 0 and y = 1, so c = −1. Then using (0 + 1)2 + 12 = r2 we

get r =
√

2 so a = −1 −
√

2 and b = −1 +
√

2. This gives the matrix

ρ(a, b) = ρ(−1 −
√

2,−1 +
√

2) = 1√
2

[
−1 1

1 1

]
corresponding to the map

fρ(a,b)(z) = −z̄+1
z̄+1

which is inversion with respect to C1 = C(a, b). We now find

a third hyperbolic line C3 = C(a, b) for some new a and b which intersects

R2 = C2 at some point between 0 and i at the angle π
3
, and intersects C1 at

the angle π
t
. We will say the center at C3 = C(a, b) is c = a+b

2
with radius

r = b−a
2

, so we want the slope of the tangent line at x = 0 to be dy
dx

= c
y

= 1√
3

so y2 = 3c2 = r2−c2 so r = 2c. Using this information we can now find point

b so b−a
2

= 2a+b
2

so b− a = 2a+ 2b so b = −3a, giving c = −a and r = −2a.

We now find the condition on a so that C1 and C3 meet at angle π
t

for

t = 3, 4, or 5. The equation of C1 is (x + 1)2 + y2 = 2 and the equation of

C3 is (x + a)2 + y2 = 4a2. Call x0 + iy0 the point in H where C1 and C3

intersect, so x2
0 + 2x0 + 1 + y2

0 = 2 and x2
0 + 2ax0 + a2 + y2

0 = 4a2. Taking the

difference of these equations gives 2x0 + 1− 2ax0− a2 = 2− 4a2 and solving

for x0 gives x0 = 1−3a2

2(1−a)
. Tangent vectors to the circles C1 and C3 at x0 are

given by

v1 =

[
y0

−1− x0

]
and v2 =

[
y0

−a− x0

]
.

These vectors have lengths ||v1|| =
√
y2

0 + (−1− x0)2 =
√

2 and ||v2|| =√
y2

0 + (−a− x0)2 = r = −2a > 0. If θ is the angle between the tangent

vector v1 and v2 then

cos(θ) =
v1 · v2

(||v1||)(||v2||)
=
y2

0 + (−1− x0)(−a− x0)√
2(−2a)

=
y2

0 + x2
0 + (a+ 1)x0 + a

−2a
√

2
=

1− 2x0 + (a+ 1)x0 + a

−2a
√

2

=
(a− 1)x0 + a+ 1

−2a
√

2
.
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Here we have used the “dot product” of vectors in R2 ([2], p. 4,6),[
x1

y1

]
·

[
x2

y2

]
= x1x2 + y1y2.

First consider the case when t = 3 so θ = π
3
. Then cos(π/3) = 1

2
=

(a−1)x0+a+1

−2a
√

2
means −a

√
2 = (a − 1)x0 + a + 1 if and only if x0 = a(1+

√
2)+1

1−a .

Since we already have a formula for x0 in terms of a, we get

a(1 +
√

2) + 1

1− a
=

1− 3a2

2(1− a)

which means 2a(1 +
√

2) + 2 = 1 − 3a2, that is, a satisfies the quadratic

equation 3a2 + 2(1 +
√

2)a+ 1 = 0. Therefore, we have

a =
−2(1 +

√
2)±

√
4(1 +

√
2)2 − 12

6
=
−2(1 +

√
2)±

√
8
√

2

6

=
−1−

√
2± 4
√

8

3
.

Although the quadratic equation has two solutions only one of them gives

a semicircle that crosses C2 between 0 and i. That is the solution a =
−1−

√
2+ 4√8

3
≈ −0.244 and the resulting C3 is shown in Figure 9.

Figure 9: T (3, 4, 3) Fundamental Domain in H

Next we will consider the case t = 4 so θ = π
4
. Then cos(π/4) = 1√

2
=

(a−1)x0+a+1

−2a
√

2
means −2a = (a− 1)x0 + (a+ 1) if and only if x0 = 3a+1

1−a . We get

3a+ 1

1− a
=

1− 3a2

2(1− a)

which means 6a + 2 = 1 − 3a2, that is, a satisfies the quadratic equation

3a2 + 6a+ 1 = 0. Therefore, we have

a =
−6±

√
36− 12

6
=
−6± 2

√
6

6
=
−3±

√
6

3
= −1±

√
2

3
.
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Again, although the quadratic equation has two solutions only one of them

gives a semicircle that crosses C2 between 0 and i. That is the solution

a = −1 +
√

2
3
≈ −0.184 and the resulting C3 is shown in Figure 10.

Figure 10: T (3, 4, 4) Fundamental Domain in H

The last case we will consider is t = 5 so θ = π
5
. Recall that the “golden

ratio” τ = 1+
√

5
2

satisfies τ 2 = τ + 1. We have cos(π/5) = 1+
√

5
4

= τ
2

=
(a−1)x0+a+1

−2a
√

2
means a

√
2τ = (a− 1)x0 − (a+ 1) if and only if x0 = a(

√
2τ+1)+1
1−a .

We then get
a(
√

2τ + 1) + 1

1− a
=

1− 3a2

2(1− a)

which means 2a(
√

2τ + 1) + 2 = 1− 3a2 so a satisfies the quadratic equation

3a2 + 2(
√

2τ + 1)a+ 1 = 0. Therefore, we have

a =
−2(
√

2τ + 1)±
√

4(
√

2τ + 1)2 − 12

6

=
−(
√

2τ + 1)±
√

(
√

2τ + 1)2 − 3

3

=
−(
√

2τ + 1)±
√

2τ + 2 + 2
√

2τ − 2

3

=
−(
√

2τ + 1)±
√

2τ + 2
√

2τ

3

=
−(
√

2τ + 1)±
√

(
√

2 + 1)(
√

5 + 1)

3
.

The value of a which gives a semicircle that crosses C2 between 0 and i is

a =
−(
√

2τ+1)+
√

(
√

2+1)(
√

5+1)

3
≈ −0.164 and the resulting C3 is shown in Figure

11.

Figure 11: T (3, 4, 5) Fundamental Domain in H

We finish with a summary of our results.

Theorem 2. The hyperbolic triangle groups T (3, 4, t) for t = 3, 4, 5
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acting on the upper half-planeH by linear fractional maps are each generated

by three specific maps fM1 , fM2 and fM3 associated with the three matrices

M1 =
1√
2

[
−1 1

1 1

]
, M2 =

[
1 0

0 −1

]
, M3 =

1

−2a

[
−a 3a2

1 a

]

where a = −1−
√

2+ 4√8
3

if t = 3, a = −1 +
√

2
3

if t = 4, and

a =
−(
√

2τ+1)+
√

(
√

2+1)(
√

5+1)

3
if t = 5.
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Figure 1: T (2, 4, 4) Fundamental Domain

19



x

y

Figure 2: T (2, 4, 4) Partial Tesselation of R2
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Figure 3: Tesselation of disk by T (3, 4, 5)
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Figure 4: Tesselation of disk by T (2, 3,∞)
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Figure 5: Tesselation of H by T (3, 4, 5)
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Figure 6: Tesselation of H by T (2, 3,∞)
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R1R2 R3

Figure 7: T (2, 3,∞) Fundamental Domain in H
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Figure 8: T (2, 3,∞) Fundamental Domain in D
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Figure 9: T (3, 4, 3) Fundamental Domain in H
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Figure 10: T (3, 4, 4) Fundamental Domain in H
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Figure 11: T (3, 4, 5) Fundamental Domain in H
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