Summary of Convergence and Divergence Tests for Series

TEST	SERIES	CONVERGENCE OR DIVERGENCE	COMMENTS
<i>n</i> th-term	$\sum a_n$	Diverges if $\lim_{n\to\infty} a_n \neq 0$	Inconclusive if $\lim_{n\to\infty} a_n = 0$
Geometric series	$\sum_{n=1}^{\infty} ar^{n-1}$	(i) Converges with sum $S = \frac{a}{1-r}$ if $ r < 1$ (ii) Diverges if $ r \ge 1$	Useful for the comparison tests if the <i>n</i> th term a_n of a series is similar to ar^{n-1}
<i>p</i> -series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	(i) Converges if $p > 1$ (ii) Diverges if $p \le 1$	Useful for the comparison tests if the <i>n</i> th term a_n of a series is <i>similar</i> to $1/n^p$
Integral	$\sum_{n=1}^{\infty} a_n$ $a_n = f(n)$	(i) Converges if $\int_{1}^{\infty} f(x) dx$ converges (ii) Diverges if $\int_{1}^{\infty} f(x) dx$ diverges	The function <i>f</i> obtained from $a_n = f(n)$ must be continuous, positive, decreasing, and readily integrable.
Comparison	$\sum_{a_n} a_n, \sum_n b_n$ $a_n > 0, b_n > 0$	 (i) If ∑b_n converges and a_n ≤ b_n for every n, then ∑a_n converges. (ii) If ∑b_n diverges and a_n ≥ b_n for every n, then ∑a_n diverges. (iii) If lim_{n→∞} (a_n/b_n) = c > 0, them both series converge or both diverges. 	The comparison series $\sum b_n$ is often a geometric series of a <i>p</i> - series. To find b_n in (iii), consider only the terms of a_n that have the greatest effect on the magnitude.
Ratio	$\sum a_n$	If $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L$ (or ∞), the series (i) converges (absolutely) if $L < 1$ (ii) diverges if $L > 1$ (or ∞)	Inconclusive if $L=1$ Useful if a_n involves factorials or <i>n</i> th powers If $a_n>0$ for every <i>n</i> , the absolute value sign may be disregarded.
Root	$\sum a_n$	If $\lim_{n\to\infty} \sqrt[n]{ a_n } = L$ (or ∞), the series (i) converges (absolutely) if $L < 1$ (ii) diverges if $L > 1$ (or ∞)	Inconclusive if $L=1$ Useful if a_n involves <i>n</i> th powers If $a_n>0$ for every <i>n</i> , the absolute value sign may be disregarded.
Alternating series	$\frac{\sum (-1)^n a_n}{a_n > 0}$	Converges if $a_k \ge a_{k+1}$ for every k and $\lim_{n\to\infty} a_n = 0$	Applicable only to an alternating series
$\sum a_n $	$\sum a_n$	If $\sum a_n $ converges, then $\sum a_n$ converges.	Useful for series that contain both positive and negative terms