Summary of Convergence and Divergence Tests for Series

TEST	SERIES	CONVERGENCE OR DIVERGENCE	COMMENTS
n th-term	$\sum a_{n}$	Diverges if $\lim _{n \rightarrow \infty} a_{n} \neq 0$	Inconclusive if $\lim _{n \rightarrow \infty} a_{n}=0$
Geometric series	$\sum_{n=1}^{\infty} a r^{n-1}$	(i) Converges with sum $S=\frac{a}{1-r}$ if $\|r\|<1$ (ii) Diverges if $\|r\| \geq 1$	Useful for the comparison tests if the nth term a_{n} of a series is similar to $a{ }^{n-1}$
p-series	$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$	(i) Converges if $p>1$ (ii) Diverges if $p \leq 1$	Useful for the comparison tests if the nth term a_{n} of a series is similar to $1 / \mathrm{n}^{p}$
Integral	$\begin{gathered} \sum_{n=1}^{\infty} a_{n} \\ a_{n}=f(n) \end{gathered}$	(i) Converges if $\int_{1}^{\infty} f(x) d x$ converges (ii) Diverges if $\int_{1}^{\infty} f(x) d x$ diverges	The function f obtained from $a_{n}=f(n)$ must be continuous, positive, decreasing, and readily integrable.
Comparison	$\begin{gathered} \sum a_{n}, \sum b_{n} \\ a_{n}>0, b_{n}>0 \end{gathered}$	(i) If $\sum b_{n}$ converges and $a_{n} \leq b_{n}$ for every n, then $\sum a_{n}$ converges. (ii) If $\sum b_{n}$ diverges and $a_{n} \geq b_{n}$ for every n, then $\sum a_{n}$ diverges. (iii) If $\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right)=c>0$, them both series converge or both diverges.	The comparison series $\sum b_{n}$ is often a geometric series of a p series. To find b_{n} in (iii), consider only the terms of a_{n} that have the greatest effect on the magnitude.
Ratio	$\sum a_{n}$	If $\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|=L$ (or ∞), the series (i) converges (absolutely) if $L<1$ (ii) diverges if $L>1$ (or ∞)	Inconclusive if $L=1$ Useful if a_{n} involves factorials or nth powers If $a_{n}>0$ for every n, the absolute value sign may be disregarded.
Root	$\sum a_{n}$	If $\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}=L$ (or ∞), the series (i) converges (absolutely) if $L<1$ (ii) diverges if $L>1$ (or ∞)	Inconclusive if $L=1$ Useful if a_{n} involves nth powers If $a_{n}>0$ for every n, the absolute value sign may be disregarded.
Alternating series	$\begin{gathered} \sum(-1)^{n} a_{n} \\ a_{n}>0 \end{gathered}$	Converges if $a_{k} \geq a_{k+1}$ for every k and $\lim _{n \rightarrow \infty} a_{n}=0$	Applicable only to an alternating series
$\sum\left\|a_{n}\right\|$	$\sum a_{n}$	If $\sum\left\|a_{n}\right\|$ converges, then $\sum a_{n}$ converges.	Useful for series that contain both positive and negative terms

