Math 222:09 Spring 2010

Working with the infinite series: $\sum a_n$

This is a guide for how to evaluate if an infinite series is convergent or divergent.

1st Check the n^{th} term of $\sum a_n$. If $\lim_{n \to \infty} a_n \neq 0$ then the series diverges, and you are done (Use T.F.D.). However if $\lim_{n \to \infty} a_n = 0$, then proceed to step 2.

 2^{nd} Check to see if the series is harmonic, geometric, or a *p*-series.

- Geometric Series: it will look like $\sum_{n=1}^{\infty} ar^{n-1}$ or $\sum_{n=0}^{\infty} ar^n$. Now we check if |r| < 1.
- *p*-series/Harmonic: it will look like $\sum_{n=1}^{\infty} \frac{1}{n^p}$. Now we check to see if p > 1.

If it is none of these, go to step 3, step 6, or step 8.

	If the series is all positive numbers (after some point):
3^{rd}	Try comparing the series to one that you know. Usually the series you want to
	compare to are geometric series, <i>p</i> -series, and/or the series made by only using the
	dominating terms from your numerator and denominator. Make sure the series
	you're comparing to is one you can evaluate.
	Use either the Comparison Test or Limit Comparison Test.
4^{th}	 If that didn't work, try either the integral test, ratio test, or root test. Try the ratio test when there are terms like n! or cⁿ. Try the root test when there are terms like nⁿ, or even a function f(n)⁵ⁿ. Try the integral test when the a_n can be written as some easily integrable f(n). (Integral test works well with logs and ln.)
5^{th}	If nothing has worked so far consider:

- More creative comparison.
 - Can you split the series up along addition/subtraction into 2 convergent series?
 - Using partial sums (maybe they will telescope).

If the series alternates between positive and negative terms (after some point): 6^{th} Try the alternating series test. If that doesn't work, 7^{th} Write $\sum_{n=1}^{\infty} |a_n|$ and then go to step 3. (You're hoping for absolute convergence here.)

 8^{th} If the series is *not* eventually alternating and *not* eventually all positive, your first choices are either to hope for absolute convergence or to work with the partial sums.