
Linear Algebra Markov Chain Example

Introduction

Here is an example of a Markov chain suitable for presentation in elementary
Linear Algebra. It uses basic results from Math 304 to understand the long-
term behavior of a discrete model where a sequence of states, X(k), 0 ≤ k ∈ Z,
is determined by a square matrix, A ∈ R4

4, by

X(k + 1) = AX(k) = AkX(0).

Each state vector X(k) ∈ R4 has coordinates which add up to 1, so the
jth coordinate means the probability that a “particle” is in the jth position,
1 ≤ j ≤ 4.

We want to understand the long-term behavior of this model as k →∞. The
idea is to diagonalizeA, that is, find an invertible matrix P such that P−1AP =
D = diag(λ1, λ2, λ3, λ4) is diagonal. Then Dk = diag(λk1, λ

k
2, λ

k
3, λ

k
4) and

A = PDP−1 so Ak = PDkP−1.

1



Let S = {e1, e2, e3, e4} be the standard basis of R4. These are possible
state vectors, where ej corresponds to the particle being located in position
j with probability 1. In the following matrix, Aej = Colj(A) comes from
assuming that a particle in position j at step k has probability of being in
another position at step k + 1 given by the coordinates of Colj(A). Let

A =


0 1

2 0 0
1 0 1

2 0
0 1

2 0 1
0 0 1

2 0


so e1 → e2 with probability 1, e2 → e1 or e2 → e3 each with probability 1

2,
e3 → e2 or e3 → e4 each with probability 1

2, and e4 → e3 with probability 1.
We want to calculate the characteristic polynomial of A, whose roots will be

the eigenvalues. One of those eigenvalues must be 1 for the following reasons.



Note that the transpose of A has obvious eigenvector


1
1
1
1

 with eigenvalue 1

because the entries of each row of AT add up to 1. Also, charA(t) = charAT (t)
because

det(A− tI4) = det((A− tI4)T ) = det(AT − tI4)
soA andAT have the same eigenvalues. We find, after tRow2+Row1 → Row1,
and then doing cofactor expansion along column 1,

charA(t) = det


−t 1

2 0 0
1 −t 1

2 0
0 1

2 −t 1
0 0 1

2 −t

 = det


0 1

2 − t
2 t

2 0
1 −t 1

2 0
0 1

2 −t 1
0 0 1

2 −t

 =

− det

1
2 − t

2 t
2 0

1
2 −t 1
0 1

2 −t

 =
1

2
det

[
1
2 − t

2 0
1
2 1

]
− (−t) det

[
1
2 − t

2 t
2

1
2 −t

]
=



1

2

(
1

2
− t2

)
+ t

((
1

2
− t2

)
(−t)− t

4

)
=

1

4
− t2

2
+ t

(
t3 − t

2
− t

4

)
=

t4 −
(

1

2
+

1

2
+

1

4

)
t2 +

1

4
= t4 − 5

4
t2 +

1

4
=

(
t2 − 1

4

)
(t2 − 1) =(

t− 1

2

)(
t +

1

2

)
(t− 1)(t + 1).

We used another cofactor expansion of the 3× 3 matrix along row 3 to get two
2× 2 matrices.

So we got four distinct eigenvalues, λ1 = 1
2, λ2 = −1

2, λ3 = 1 and λ4 = −1,
each with algebraic multiplicity 1. For each of these we must find a basis vector
for the 1-dimensional eigenspace, and put them together to get the columns of
transition matrix, P .



Plug λ1 = 1
2 into A− tI4. Row reduce

−1
2

1
2 0 0

1 −1
2

1
2 0

0 1
2 −1

2 1
0 0 1

2 −1
2

∣∣∣∣∣∣∣∣
0
0
0
0

 to


1 0 0 1
0 1 0 1
0 0 1 −1
0 0 0 0

∣∣∣∣∣∣∣∣
0
0
0
0

 so

x1 = −r
x2 = −r
x3 = r

x4 = r ∈ R

, then

Aλ1 =



−r
−r
r
r

 ∈ R4

∣∣∣∣ r ∈ R

 has basis

w1 =


−1
−1
1
1


 .

Plug λ2 = −1
2 into A− tI4. Row reduce

1
2

1
2 0 0

1 1
2

1
2 0

0 1
2

1
2 1

0 0 1
2

1
2

∣∣∣∣∣∣∣∣
0
0
0
0

 to


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

∣∣∣∣∣∣∣∣
0
0
0
0

 so

x1 = r
x2 = −r
x3 = −r
x4 = r ∈ R

, then



Aλ2 =



r
−r
−r
r

 ∈ R4

∣∣∣∣ r ∈ R

 has basis

w2 =


1
−1
−1
1


 .

Plug λ3 = 1 into A− tI4. Row reduce
−1 1

2 0 0
1 −1 1

2 0
0 1

2 −1 1
0 0 1

2 −1

∣∣∣∣∣∣∣∣
0
0
0
0

 to


1 0 0 −1
0 1 0 −2
0 0 1 −2
0 0 0 0

∣∣∣∣∣∣∣∣
0
0
0
0

 so

x1 = r
x2 = 2r
x3 = 2r

x4 = r ∈ R

, then

Aλ3 =



r
2r
2r
r

 ∈ R4

∣∣∣∣ r ∈ R

 has basis

w3 =


1
2
2
1


 .



Plug λ3 = −1 into A− tI4. Row reduce
1 1

2 0 0
1 1 1

2 0
0 1

2 1 1
0 0 1

2 1

∣∣∣∣∣∣∣∣
0
0
0
0

 to


1 0 0 1
0 1 0 −2
0 0 1 2
0 0 0 0

∣∣∣∣∣∣∣∣
0
0
0
0

 so

x1 = −r
x2 = 2r
x3 = −2r
x4 = r ∈ R

, then

Aλ4 =



−r
2r
−2r
r

 ∈ R4

∣∣∣∣ r ∈ R

 has basis

w4 =


−1
2
−2
1


 .

Then we found an eigen-basis T = {w1, w2, w3, w4} such that the linear map
LA : R4 → R4 defined as usual by LA(X) = AX , is represented with respect
to the standard basis, S, by A, but is represented with respect to T by the
diagonal matrix D = diag(λ1, λ2, λ3, λ4).



We now have the transition matrix, P = SPT where Colj(P ) = wj, and we
get its inverse by row reducing [P |I4]→ [I4|P−1]:

P =


−1 1 1 −1
−1 −1 2 2
1 −1 2 −2
1 1 1 1

 and P−1 =
1

6


−2 −1 1 2
2 −1 −1 2
1 1 1 1
−1 1 −1 1

 .
As explained before, we could now compute Ak = PDkP−1 =
−1 1 1 −1
−1 −1 2 2
1 −1 2 −2
1 1 1 1




(1/2)k 0 0 0
0 (−1/2)k 0 0
0 0 1k 0
0 0 0 (−1)k

 1

6


−2 −1 1 2
2 −1 −1 2
1 1 1 1
−1 1 −1 1


but this expression is quite complicated. To simplify our calculations, we first
compute

PDk = [(1/2)kCol1(P )|(−1/2)kCol2(P )|Col3(P )|(−1)kCol4(P )]

and see that as k gets very large, the first two columns go to the zero column
041. The third and fourth columns only depend on whether k is even or odd.



So we assume now that k is so large that we can take those first two columns
to be zero columns and get a simplified computation of

PDkP−1 =


0 0 1 −(−1)k

0 0 2 2(−1)k

0 0 2 −2(−1)k

0 0 1 (−1)k

 1

6


−2 −1 1 2
2 −1 −1 2
1 1 1 1
−1 1 −1 1

 =

1

6


1 + (−1)k 1− (−1)k 1 + (−1)k 1− (−1)k

2(1− (−1)k) 2(1 + (−1)k) 2(1− (−1)k) 2(1 + (−1)k)
2(1 + (−1)k) 2(1− (−1)k) 2(1 + (−1)k) 2(1− (−1)k)

1− (−1)k 1 + (−1)k 1− (−1)k 1 + (−1)k

 .
Finally, we get one answer when k is even:

1

6


2 0 2 0
0 4 0 4
4 0 4 0
0 2 0 2

 =


1/3 0 1/3 0
0 2/3 0 2/3

2/3 0 2/3 0
0 1/3 0 1/3





and another answer when k is odd:

1

6


0 2 0 2
4 0 4 0
0 4 0 4
2 0 2 0

 =


0 1/3 0 1/3

2/3 0 2/3 0
0 2/3 0 2/3

1/3 0 1/3 0

 .
This means that after a large even number of steps, if the initial state vector
X(0) is either e1 or e3 then there is a probability of 1/3 that the particle is in
position 1 and probability of 2/3 that it is in position 3, but if X(0) is either
e2 or e4 then it has a probability of 2/3 of being in position 2 and probability
1/3 of being in position 4.

After a large odd number of steps, if the initial state vector X(0) is either
e1 or e3 then there is a probability of 2/3 that the particle is in position 2 and
probability of 1/3 that it is in position 4, but if X(0) is either e2 or e4 then it
has a probability of 1/3 of being in position 1 and probability 2/3 of being in
position 3.


