Linear Algebra Markov Chain Example

Introduction
Here is an example of a Markov chain suitable for presentation in elementary
Linear Algebra. It uses basic results from Math 304 to understand the long-
term behavior of a discrete model where a sequence of states, X (k),0 < k € Z,

is determined by a square matrix, A € R], by
X(k+1)=AX (k) = A*X(0).

_ Each state vector X (k) € R* has coordinates which add up to 1, so the

4t coordinate means the probability that a “particle” is in the j% position,
I<jy)<4

We want to understand the long-term behavior of this model as £ — oo. The
idea is to diagonalize A, that is, find an invertible matrix P such that Pt AP =
D = diag(\i, Mo, A3, \y) is diagonal. Then D* = diag(A\, A5, A5 AE) and
A= PDP ' so A¥ = PD*P!.



Let S = {e;, ey, e3,e4} be the standard basis of RY. These are possible
state vectors, where e; corresponds to the particle being located in position
g with probability 1. In the following matrix, Ae; = Col;(A) comes from
assuming that a particle in position 7 at step k& has probability of being in
another position at step k + 1 given by the coordinates of Col;(A). Let
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SO e; — e with probability 1, es — e; or es — ez each with probability %,
e3 — €y or e3 — €4 cach with probability %, and e; — e3 with probability 1.

We want to calculate the characteristic polynomial of A, whose roots will be
the eigenvalues. One of those eigenvalues must be 1 for the following reasons.
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Note that the transpose of A has obvious eigenvector
1

because the entries of each row of AT add up to 1. Also, char(t) = char yr(t)
because

det(A — t1,) = det((A — tI))") = det(A” —tI,)
so A and A" have the same eigenvalues. We find, after t Rows+Row; — Row;,
and then doing cofactor expansion along column 1,
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We used another cofactor expansion of the 3 x 3 matrix along row 3 to get two
2 X 2 matrices.

So we got four distinct eigenvalues, \; = %, Aoy = —%, A3 =1and \y = —1,
each with algebraic multiplicity 1. For each of these we must find a basis vector
for the 1-dimensional eigenspace, and put them together to get the columns of
transition matrix, P.



Plug A\ = % into A — tI,. Row reduce
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Plug Ay = —% into A — tl,. Row reduce
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Plug A3 = 1 into A — t14. Row reduce
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Plug A3 = —1 into A — t14. Row reduce
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Then we found an eige}l—basis T = {wy, we, w3, wy} such that the
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linear map

L, R* — R* defined as usual by L(X) = AX, is represented with respect
to the standard basis, S, by A, but is represented with respect to 1" by the
diagonal matrix D = diag(A1, Ao, A3, \g).



We now have the transition matrix, P = ¢Pr where Col;(P) = w;, and we

get its inverse by row reducing [P|Iy] — [I4|P7Y]:
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As explained before, we could now compute A¥ = PD¥P~! =
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but this expression is quite complicated. To simplify our calculations, we first
compute

PD* = [(1/2)*Coly (P)|(—1/2)*Coly(P)|Cols(P)|(—1)"Coly(P)]
and see that as k gets very large, the first two columns go to the zero column
0. The third and fourth columns only depend on whether k is even or odd.



So we assume now that & is so large that we can take those first two columns
to be zero columns and get a simplified computation of
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Finally, we get one answer when k is even:

2020 [1/3 0 1/3 0]
L{o404] |0 2/3 0 2/3
614040 [2/3 0 2/3 0

020 2 0 1/3 0 1/3



and another answer when k is odd:
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This means that after a large even number of steps, if the initial state vector
X(0) is either e; or es then there is a probability of 1/3 that the particle is in
position 1 and probability of 2/3 that it is in position 3, but if X (0) is either
e, or ey then it has a probability of 2/3 of being in position 2 and probability
1/3 of being in position 4.

After a large odd number of steps, if the initial state vector X (0) is either
e or eg then there is a probability of 2/3 that the particle is in position 2 and
probability of 1/3 that it is in position 4, but if X (0) is either es or e4 then it
has a probability of 1/3 of being in position 1 and probability 2/3 of being in
position 3.



