SHOW ALL NECESSARY WORK FOR EACH PROBLEM

(1) (10 Points)
$$A = \begin{bmatrix} 1 & 1 & -1 & 1 & 0 \\ 2 & 1 & 0 & -1 & 5 \\ 3 & 1 & 1 & 1 & 2 \\ 4 & 1 & 2 & -1 & 7 \end{bmatrix}$$
 row reduces to $C = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

- (a) (2 Points) Find a **basis** for Row(A), the row space of A.
- (b) (2 Points) Find a basis for $Ker(L_A) = Nul(A)$, the kernel of L_A .
- (c) (2 Points) Find a **basis** for $Range(L_A) = Col(A)$.
- (d) (4 Points) For each free variable in $Ker(L_A)$, find a dependence relation among the columns of A and use it to write a **non-pivot** column of A as a linear combination of **previous pivot** columns of A.
- (2) (10 Pts) Answer each question separately. V and W are vector spaces over \mathbb{F} .
- (a) Find the elementary matrix E such that for any $A \in \mathbb{F}_n^3$, EA is the matrix obtained from A by multiplying row 3 of A by 7.
- (b) If $S = \{v_1, v_2, \dots, v_n\}$ is an **independent** subset of V, and $L: V \to W$ is **injective**, what is the most you can be sure about $L(S) = \{L(v_1), L(v_2), \dots, L(v_n)\}$ in W?
- (c) If $S = \{v_1, v_2, \dots, v_m\}$ is **dependent** in V, and linear map $L: V \to W$ is **injective**, what is the most you can be sure about $L(S) = \{L(v_1), \dots, L(v_m)\}$?
- (d) In W let $T = \{w_1, w_2, \dots, w_{m-1}\}$ and $T' = \{w_1, w_2, \dots, w_{m-1}, w_m\}$ where the last vector $w_m \in \langle T \rangle$ is a linear combination of the previous vectors. What is the relationship between $\langle T \rangle$ and $\langle T' \rangle$?
- (e) If $S = \{v_1, v_2, \dots, v_n\}$ is **independent** in V and $v \in \langle S \rangle$ and $T = \{v_1, v_2, \dots, v_n, v\}$, then what is the most you can be sure about $dim(\langle T \rangle)$?
- (3) (10 points) Answer each question separately.
- (a) If $L: \mathbb{F}_3^3 \to \mathbb{F}^9$ is **injective**, what is the most you can be sure about L? (b) If $L: \mathbb{F}^3 \to \mathbb{F}^8$ what are all the possibilities for dim(Range(L))?
- (c) If $L: \mathbb{F}^7 \to \mathbb{F}^4$ what are all the possibilities for dim(Ker(L))?
- (d) If $A \in \mathbb{F}_n^n$ and the homogeneous linear system AX = 0 has **non-trivial** solutions, then what is the most you can be sure about det(A)?
- (e) Let $A \in \mathbb{F}_n^n$ be **invertible** and suppose a **non-zero** $X \in \mathbb{F}^n$ satisfies $AX = \lambda X$ for some $\lambda \in \mathbb{F}$. Why can you be sure that $\lambda \neq 0$?
- (4) (10 Pts) Answer each question separately.
- (a) (5 Pts) $S = \left\{ v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \right\}$ is a basis of \mathbb{F}^3 . For $v = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ find the coordinate vector $[v]_S$ with respect to S.
- (b) (5 Pts) $T = \{t^2, t^2 + t, t^2 + t + 1\}$ is a basis of \mathcal{P}_2 (polynomials of degree at most 2). For $p = at^2 + bt + c$ find the coordinate vector $[p]_T$ with respect to T.

- (5) (10 Points) Answer each question separately.
- (a) Determine whether $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$ is invertible, and find A^{-1} if it is.
- (b) Let $E \in \mathbb{F}_n^n$ be an elementary matrix corresponding to an elementary **switcher** row operation. What can you say about $\det(E)$?
- (c) Suppose $A \in \mathbb{F}_n^n$ has characteristic polynomial $\det(\lambda I_n A) = (\lambda \lambda_1)^{k_1} (\lambda \lambda_2)^{k_2} \cdots (\lambda \lambda_r)^{k_r}$ with r distinct eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_r$ in \mathbb{F} . What is the most you can say about the sum of all the algebraic multiplicities, $k_1 + k_2 + \cdots + k_r$?
- (d) With notation as in part (c), let $A_{\lambda_i} = \{X \in \mathbb{F}^n \mid AX = \lambda_i X\}$ be the λ_i eigenspace of A. What is the **geometric multiplicity** g_i of A?
- (e) If $A^T = A^{-1}$ for $A \in \mathbb{F}_n^n$, what is the most you can say about $\det(A)$?
- (6) (10 Points) Let $L: \mathbb{F}^2 \to \mathbb{F}^3$ be given by $L \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 2a+3b \\ -a+b \\ 4a-5b \end{bmatrix}$.

Let $S = \{v_1, v_2\}$ be the standard basis of \mathbb{F}^2 and let $T = \{w_1, w_2, w_3\}$ be the standard basis of \mathbb{F}^3 . Let other ordered bases be

$$S' = \left\{ v_1' = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, v_2' = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\} \quad \text{ and } T' = \left\{ w_1' = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, w_2' = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, w_3' = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

- (a) (2 pts) Find the matrix $_T[L]_S$ representing L from S to T.
- (b) (3 pts) Find the matrix $T'[L]_{S'}$ representing L from S' to T' without using transition matrices. Do it directly by row reducing [T'|L(S')].
- (c) (3 pts) Find the transition matrices $_SP_{S'}$, $_TQ_{T'}$ and $_{T'}Q_T = (_TQ_{T'})^{-1}$.
- (d) (2 pts) Using your answers from parts (a) and (c), explicitly multiply out $_{T'}Q_{T}$ $_{T}[L]_{S}$ $_{S}P_{S'}$ and compare it to your answer for $_{T'}[L]_{S'}$ from part (b). What was their relationship, and what should it have been?

(7) (15 Points) Let
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
.

- (a) (5 pts) Find $Char_A(\lambda) = \det(\lambda I_4 A)$, the **characteristic polynomial** of A.
- (b) (2 pts) Find the eigenvalues λ_i of A and their algebraic multiplicities k_i .
- (c) (6 pts) For each eigenvalue λ_i of A, find a **basis** of its eigenspace A_{λ_i} .
- (d) (2 pts) Is A diagonalizable? Explain why. If it is, give a diagonal D similar to A.

Math 304-6 Linear Algebra Fall 2025 Exam 2 Solutions Feingold

(1) (10 Points) (a) (2 Points)

$$A = \begin{bmatrix} 1 & 1 & -1 & 1 & 0 \\ 2 & 1 & 0 & -1 & 5 \\ 3 & 1 & 1 & 1 & 2 \\ 4 & 1 & 2 & -1 & 7 \end{bmatrix} \text{ row reduces to } C = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ so }$$

$$\{[1 \ 0 \ 1 \ 0 \ 1], [0 \ 1 \ -2 \ 0 \ 1], [0 \ 0 \ 0 \ 1 \ -2]\}$$
 is a basis for $Row(A)$.

(b) (2 Points) A basis for $Ker(L_A) = Nul(A)$ is found by row reducing $[A|\mathbf{0}_1^4]$ to $[C|\mathbf{0}_1^4]$, interpreting the solutions in \mathbb{F}^5 , and separating the free variables to get two independent vectors which span it:

$$\left\{ \begin{bmatrix} -r - s \\ 2r - s \\ r \\ 2s \\ s \end{bmatrix} = r \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -1 \\ -1 \\ 0 \\ 2 \\ 1 \end{bmatrix} \in \mathbb{F}^5 \mid r, s \in \mathbb{F} \right\} \text{ so } \left\{ \begin{bmatrix} -1 \\ 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 0 \\ 2 \\ 1 \end{bmatrix} \right\}$$

is a basis for $Ker(L_A)$.

(c) (2 Points) A basis for Col(A) consists of the three pivot columns of A, the columns with leading ones in the RREF C, that is, $\{Col_1(A), Col_2(A), Col_4(A)\}$. Other correct answers can be obtained by linear combinations of those three columns, for example,

$$\left\{ \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \right\}$$

(d) (4 Points) Each basis vector in $Ker(L_A)$ gives a dependence relation among the columns of A. The two dependence relations obtained that way are:

$$-1Col_1(A) + 2Col_2(A) + Col_3(A) = \mathbf{0}_1^4$$

and

$$-1Col_1(A) - 1Col_2(A) + 2Col_4(A) + Col_5(A) = \mathbf{0}_1^4$$

so the two **non-pivot** columns are the linear combinations of **previous pivot** columns

$$Col_3(A) = Col_1(A) - 2Col_2(A)$$
 and $Col_5(A) = Col_1(A) + Col_2(A) - 2Col_4(A)$.

- (2) (10 Points, 2 points each)
- (a) For elementary matrix $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix}$, obtained by doing the row operation to I_3 ,

EA is the matrix obtained from A by multiplying row 3 of A by 7.

- (b) If $S = \{v_1, v_2, \dots, v_n\}$ is **independent** in V, and $L : V \to W$ is **injective**, then you be sure that $L(S) = \{L(v_1), L(v_2), \dots, L(v_n)\}$ is an **independent** subset of Range(L).
- (c) If $S = \{v_1, v_2, \dots, v_m\}$ is **dependent** in V, and linear map $L: V \to W$ is **injective**, you can be sure that $L(S) = \{L(v_1), \dots, L(v_m)\}$ is **dependent**.
- (d) In W let $T = \{w_1, w_2, \dots, w_{m-1}\}$ and $T' = \{w_1, w_2, \dots, w_{m-1}, w_m\}$ where the last vector $w_m \in \langle T \rangle$ is a linear combination of the previous vectors. The relationship is $\langle T \rangle = \langle T' \rangle$ since w_m is redundant in T'.
- (e) If $S = \{v_1, v_2, \dots, v_n\}$ is **independent** in V and $v \in \langle S \rangle$, then $T = \{v_1, v_2, \dots, v_n, v\}$ is **dependent** since v is redundant, so $\langle T \rangle = \langle S \rangle$ has basis S so $dim(\langle T \rangle) = n$.
- (3) (10 Points, 2 points each)
- (a) Use $\dim(V) = \dim(Ker(L)) + \dim(Range(L))$. L injective means $\dim(Ker(L)) = 0$ so $\dim(V) = \dim(\mathbb{F}_3^3) = 9 = \dim(Range(L)) = \dim(\mathbb{F}^9)$, so $Range(L) = \mathbb{F}^9$ so L is surjective. L is thus bijective, invertible and an isomorphism.
- (b) $L: \mathbb{F}^3 \to \mathbb{F}^8$ so $3 = \dim(Ker(L)) + \dim(Range(L))$ and $0 \le \dim(Ker(L)) \le 3$ so $0 \le \dim(Range(L)) \le 3$.
- (c) $L: \mathbb{F}^7 \to \mathbb{F}^4$ so $7 = \dim(\mathbb{F}^7) = \dim(Ker(L)) + \dim(Range(L))$ and $0 \leq \dim(Range(L)) \leq 4$ so $3 \leq \dim(Ker(L)) \leq 7$.
- (d) If $A \in \mathbb{F}_n^n$ and the homogeneous linear system AX = 0 has **non-trivial** solutions, then you can be sure that rank(A) < n so det(A) = 0.
- (e) Let $A \in \mathbb{F}_n^n$ be **invertible** and suppose a **non-zero** $X \in \mathbb{F}^n$ satisfies $AX = \lambda X$ for some $\lambda \in \mathbb{F}$. Then $\lambda \neq 0$ because otherwise $AX = \mathbf{0}$ has a **non-trivial** solution so Rank(A) < n so A could not be invertible.
- (4) (10 Points) (a) (5 Pts) To solve $x_1v_1 + x_2v_2 + x_3v_3 = v$ row reduce $\begin{bmatrix} 1 & 1 & 0 & a \\ 1 & 2 & 1 & b \\ 1 & 3 & 1 & c \end{bmatrix} \text{ to } \begin{bmatrix} 1 & 0 & 0 & a+b-c \\ 0 & 1 & 0 & -b+c \\ 0 & 0 & 1 & -a+2b-c \end{bmatrix} \text{ so } [v]_S = \begin{bmatrix} a+b-c \\ -b+c \\ -a+2b-c \end{bmatrix}.$
- (b) (5 Pts) To write p as a linear combination from T, solve the equation $x_1(t^2) + x_2(t^2 + t) + x_3(t^2 + t + 1) = at^2 + bt + b$. Compare coefficients of each power of t on both sides to get the linear system $x_1 + x_2 + x_3 = a$, $x_2 + x_3 = b$, $x_3 = c$. To solve that, row reduce $\begin{bmatrix} 1 & 1 & 1 & a \\ 1 & 1 & 1 & a \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & a b \\ 1 & 0 & 0 & a b \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 1 & b \\ 0 & 0 & 1 & c \\ T & p \end{bmatrix} \text{ to } \begin{bmatrix} 1 & 0 & 0 & a - b \\ 0 & 1 & 0 & b - c \\ 0 & 0 & 1 & c \\ I_3 & X \end{bmatrix}. \text{ So } [p]_T = \begin{bmatrix} a - b \\ b - c \\ c \end{bmatrix}. \text{ We can check that } (a - b)t^2 + (b - c)(t^2 + t) + c(t^2 + t + 1) = at^2 + bt + c.$$

(5) (10 Points, 2 points each) Answer each question separately.

(a)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}$$
 is invertible and $A^{-1} = \begin{bmatrix} -2 & 3 & 4 \\ 0 & 0 & 1 \\ 1 & -1 & -2 \end{bmatrix}$ because
$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ A & 0 & 0 & 0 & 1 \end{bmatrix}$$
 reduces to
$$\begin{bmatrix} 1 & 0 & 0 & -2 & 3 & 4 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & -1 & -2 \\ I_3 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

- (b) If $E \in \mathbb{R}_n^n$ is an elementary matrix corresponding to an elementary **switcher** row operation then $\det(E) = -1$.
- (c) If $A \in \mathbb{F}_n^n$ has characteristic polynomial $\det(\lambda I_n A) = (\lambda \lambda_1)^{k_1} (\lambda \lambda_2)^{k_2} \cdots (\lambda \lambda_r)^{k_r}$ with r distinct eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_r$ then $k_1 + k_2 + \cdots + k_r = n$ is the degree of that polynomial.
- (d) With notation as in part (c), let $A_{\lambda_i} = \{X \in \mathbb{F}^n \mid AX = \lambda_i X\}$ be the λ_i eigenspace of A. The **geometric multiplicity** of A is $g_i = dim(A_{\lambda_i})$.
- (e) If $A^T = A^{-1}$ for $A \in \mathbb{F}_n^n$, then $\det(A) = \det(A^T) = \det(A^{-1}) = \frac{1}{\det(A)}$ so $(\det(A))^2 = 1$ so $\det(A) = \pm 1$.

(a)
$$(2 \text{ Pts}) L(S)$$
: $L(v_1) = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$, $L(v_2) = \begin{bmatrix} 3 \\ 1 \\ -5 \end{bmatrix}$. Then $[T \mid L(S)] = \begin{bmatrix} 1 & 0 & 0 & 2 & 3 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 4 & -5 \\ T & & L(S) \end{bmatrix}$ so $_T[L]_S = \begin{bmatrix} 2 & 3 \\ -1 & 1 \\ 4 & -5 \end{bmatrix}$.

(c) (3 Pts)
$$_{S}P_{S'} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
 and $_{T}Q_{T'} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ since S and T are standard bases. To get $_{T'}Q_{T} = (_{T}Q_{T'})^{-1}$, row reduce

(d)
$$(2 \text{ Pts}) (T_{I'}Q_{T})(T_{I}[L]_{S})(S_{S}P_{S'}) =$$

$$\begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 1 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} -5 & 6 \\ -3 & -2 \\ 7 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 7 & 13 \\ -7 & -9 \\ 1 & -2 \end{bmatrix} =$$

$$T'[L]_{S'} \text{ is the relationship, as it should be according to a theorem we proved in class.}$$

(7) (15 Points) Let
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
.

(a)
$$(5 \text{ points}) \ Char_A(\lambda) = \det(\lambda I_4 - A) = \det(A - \lambda I_4) =$$

$$\det\begin{bmatrix} 1 - \lambda & 0 & 1 & 0 \\ 0 & 1 - \lambda & 0 & 1 \\ 1 & 0 & 1 - \lambda & 0 \\ 0 & 1 & 0 & 1 - \lambda \end{bmatrix} = \det\begin{bmatrix} -\lambda & 0 & \lambda & 0 \\ 0 & -\lambda & 0 & \lambda \\ 1 & 0 & 1 - \lambda & 0 \\ 0 & 1 & 0 & 1 - \lambda \end{bmatrix} =$$

$$\lambda^2 \det\begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & 1 - \lambda & 0 \\ 0 & 1 & 0 & 1 - \lambda \end{bmatrix} = \lambda^2 \det\begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 2 - \lambda & 0 \\ 0 & 0 & 0 & 2 - \lambda \end{bmatrix} = \lambda^2 (\lambda - 2)^2$$

- (b) (2 points) The **eigenvalues** of A are $\lambda_1 = 0$ and $\lambda_2 = 2$ with corresponding **algebraic** multiplicities $k_1 = 2$ and $k_2 = 2$.
- (c) (6 points) For each eigenvalue λ_i of A, find a **basis** of its eigenspace A_{λ_i} by solving the homogeneous linear system $[A \lambda_i I_4 | 0_1^4]$. For $\lambda_1 = 0$, row reduce $[A|0_1^4] =$

the homogeneous linear system
$$\begin{bmatrix} A - \lambda_i I_4 | 0_1^4 \end{bmatrix}$$
. For $\lambda_1 = 0$, row reduce $\begin{bmatrix} A | 0_1^4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$ to $\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ so $\begin{bmatrix} x_1 = -r \\ x_2 = -s \\ x_3 = r \in \mathbb{F} \end{bmatrix}$, then $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ has basis $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ has basis $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ has basis $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ has basis $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_2 = -s \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and $\begin{bmatrix} x_1 = -r \\ x_1 = -r \end{bmatrix}$ and

For $\lambda_2 = 2$, row reduce $[A - 2I_4|0_1^4] =$

$$\begin{bmatrix} -1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \end{bmatrix} \text{ to } \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ so } \begin{bmatrix} x_1 = r \\ x_2 = s \\ so \\ x_3 = r \in \mathbb{F}, \text{ then } \\ x_4 = s \in \mathbb{F} \end{bmatrix}$$

$$A_{\lambda_2} = \left\{ \begin{bmatrix} r \\ s \\ r \end{bmatrix} \in \mathbb{F}^4 \mid r, s \in \mathbb{F} \right\} \text{ has basis } T_2 = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

(d) (2 points) A is diagonalizable because $T = T_1 \cup T_2$ is an eigenbasis of F^4 . The geometric multiplicities are $g_1 = 2 = k_1$ and $g_2 = 2 = k_2$. A is similar to the diagonal