NA	ME (Printed):				
	Math 304-6	Linear Algebra	Fall 2025	Quiz 2	Feingold
be a	an $m \times n$ matrix with	th entries from field e function associated	\mathbb{F} , let $0 \in \mathbb{F}^n$ d with A defin	be the m ded as $L_A(X)$	problems, let $A \in \mathbb{F}_n^m \times 1$ zero matrix, and $X = AX$. Each fill-in
(1)		matrix C in RREF			nen the homogeneous n its solution.
(2)	2) If the linear system $AX = 0$ has only the trivial solution, then $rank(A) = \underline{\hspace{1cm}}$.				
(3) If the linear system $AX = B$ is consistent for any $B \in \mathbb{F}^m$, then $rank(A) = \underline{\hspace{1cm}}$.					
(4)	If $rank(A) = m$ the	en as a function L_A	is	(a p	property).
(5)	If $rank(A) = n$ the	n as a function L_A i	S	(a p	roperty).
(6)	In general, for $A \in$	\mathbb{F}_n^m , we only know t	hat $rank(A)$	<	·
(7)	If $m > n$ then as a	function L_A canno	t be	(a property).
(8)	If $m < n$ then as a	function L_A canno	t be	(a property).
(9)	If L_A is bijective (b	ooth injective and su	rjective) then	= ran	$nk(A) = \underline{\hspace{1cm}}.$

Math 304-6 Linear Algebra Fall 2025 Quiz 2 Solutions Feingold INSTRUCTIONS: Fill in the blank for each problem. For all problems, let $A \in \mathbb{F}_n^m$ be an $m \times n$ matrix with entries from field \mathbb{F} , let $\mathbf{0} \in \mathbb{F}^m$ be the $m \times 1$ zero matrix, and let $L_A : \mathbb{F}^n \to \mathbb{F}^m$ be the function associated with A defined as $L_A(X) = AX$. Each fill-in blank is worth one point. No justifications for answers are needed.

- (1) If A row reduces to matrix C in RREF with r non-zero rows, then the homogeneous linear system $AX = \mathbf{0}$ has n r free variables in its solution.
- (2) If the linear system $AX = \mathbf{0}$ has only the trivial solution, then $rank(A) = \underline{n}$.
- (3) If the linear system AX = B is consistent for any $B \in \mathbb{F}^m$, then $rank(A) = \underline{m}$.
- (4) If rank(A) = m then then as a function L_A is <u>onto</u> or surjective.
- (5) If rank(A) = n then then as a function L_A is one to one or injective.
- (6) In general, for $A \in \mathbb{F}_n^m$, we only know that $rank(A) \leq Min(m, n)$.
- (7) If m > n then then as a function L_A cannot be $\underline{surjective}$ since $rank(A) = r \le n < m$ so there are consistency conditions on B for AX = B.
- (8) If m < n then then as a function L_A cannot be <u>injective</u> since $rank(A) = r \le m < n$ so there are n r > 0 free variables in the solutions to $AX = \mathbf{0}$.
- (9) If L_A is bijective (both injective and surjective) then $\underline{m} = rank(A) = \underline{n}$.