NAME (Printed):

Math 304-6 Linear Algebra Fall 2025 Quiz 4 Feingold

INSTRUCTIONS: Show all calculations needed to justify your answers.

(1) (5 Pts) Let m, n, p be given positive integers and let $A \in \mathbb{F}_n^m$ be a given $m \times n$ matrix fixed for this problem. Then A determines a set of $n \times p$ matrices $W = \{B \in \mathbb{F}_p^n \mid AB = 0_p^m\}$. Show W is a subspace of \mathbb{F}_p^n .

^{(2) (5} Pts) Let $A = \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix} \in \mathbb{F}_2^2$. Find $W = \left\{ B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{F}_2^2 \mid AB = 0_2^2 \right\}$ by solving a linear system.

Math 304-6 Linear Algebra Fall 2025 Quiz 4 Solutions Feingold INSTRUCTIONS: Show all calculations needed to justify your answers.

(1) (5 Pts) Let m, n, p be given positive integers and let $A \in \mathbb{F}_n^m$ be a given $m \times n$ matrix fixed for this problem. Then A determines a set of $n \times p$ matrices $W = \{B \in \mathbb{F}_p^n \mid AB = 0_p^m\}$. Show W is a subspace of \mathbb{F}_p^n .

SOLUTION: First show W is closed under addition. Let $B_1, B_2 \in W$, so $AB_1 = 0_p^m$ and $AB_2 = 0_p^m$. Then $A(B_1 + B_2) = AB_1 + AB_2 = 0_p^m + 0_p^m = 0_p^m$ means $B_1 + B_2 \in W$.

Next show W is closed under scalar multiplication. Let $B \in W$ so $AB = 0_p^m$, and let $r \in \mathbb{F}$. Then $A(rB) = r(AB) = r0_p^m = 0_p^m$ means $rB \in W$. Finally, $0_p^n \in W$ since $A0_p^n = 0_p^m$.

(2) (5 Pts) Let
$$A = \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix} \in \mathbb{F}_2^2$$
. Find $W = \left\{ B = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{F}_2^2 \mid AB = 0_2^2 \right\}$ by solving a linear system.

SOLUTION: To find all $B \in \mathbb{F}_2^2$ such that $AB = 0_2^2$, write out the condition as

$$\begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} (a+3c) & (b+3d) \\ (3a+9c) & (3b+9d) \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

This gives us four equations in four variables which we solve by row reduction as follows:

so
$$W = \left\{ B = \begin{bmatrix} -3c & -3d \\ c & d \end{bmatrix} \in \mathbb{F}_2^2 \mid c, d \in \mathbb{F} \right\}.$$