NAME (Printed):

Math 304-6 Linear Algebra Fall 2025 Quiz 9 Feingold

INSTRUCTIONS: Show all calculations and reasons needed to justify your answers.

Let $V = \mathbb{R}^4$ with the standard dot product. Let $W = \langle T \rangle$ where

$$T = \left\{ w_1 = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, w_2 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, w_3 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} \right\}$$
is an ordered list.

- (1) (6 Pts) Use the Gram-Schmidt process to convert T into an **orthogonal** basis $T' = \{w'_1 = w_1, w'_2, w'_3\}$ for W. Please rescale your answers to avoid fractions.
- (2) (4 Pts) Use your answer to part (1) to find the coefficients, x_1, x_2, x_3 , of the projection,

$$Proj_W(v) = \sum_{i=1}^3 x_i w_i'$$
 of the vector $v = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in V$ into the subspace W . They are

uniquely determined by the condition that $v - Proj_W(v)$ is orthogonal to W, that is, $(v - Proj_W(v)) \cdot w'_j = 0$ for $1 \le j \le 3$.

Math 304-6 Linear Algebra Fall 2025 Quiz 9 Solutions Feingold INSTRUCTIONS: Show all calculations and reasons needed to justify your answers.

Let $V = \mathbb{R}^4$ with the standard dot product. Let $W = \langle T \rangle$ where

$$T = \left\{ w_1 = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, w_2 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, w_3 = \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} \right\}$$
is an ordered list.

(1) (6 Pts) Use the Gram-Schmidt process to convert T into an **orthogonal** basis $T' = \{w'_1 = w_1, w'_2, w'_3\}$ for W. Answers are rescaled to avoid fractions. Solution: Step 1: $w'_1 = w_1$.

Step 2:
$$w_2' = w_2 - \frac{w_2 \cdot w_1'}{w_1' \cdot w_1'} w_1' = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{10}{30} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \\ 0 \\ -1 \end{bmatrix}$$
 which we rescale to $\begin{bmatrix} 2 \\ 1 \\ 0 \\ -1 \end{bmatrix}$.

Step 3:
$$w_3' = w_3 - \frac{w_3 \cdot w_1'}{w_1' \cdot w_1'} w_1' - \frac{w_3 \cdot w_2'}{w_2' \cdot w_2'} w_2' = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} - \frac{4}{30} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} - \frac{2}{6} \begin{bmatrix} 2 \\ 1 \\ 0 \\ -1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 \\ -3 \\ 3 \\ -1 \end{bmatrix}.$$

So, rescaling to avoid fractions,
$$T' = \left\{ w_1' = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, w_2' = \begin{bmatrix} 2\\1\\0\\-1 \end{bmatrix}, w_3' = \begin{bmatrix} 1\\-3\\3\\-1 \end{bmatrix} \right\}.$$

Check that $w'_i \cdot w'_j = 0$ for $1 \le i < j \le 3$, and by the process, $\langle T' \rangle = \langle T \rangle$.

(2) (4 Pts) Use your answer to part (1) to find the coefficients, x_1, x_2, x_3 , of the projection,

$$Proj_W(v) = \sum_{i=1}^3 x_i w_i'$$
 of the vector $v = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in V$ into the subspace W . They are

uniquely determined by the condition that $v - Proj_W(v)$ is orthogonal to W, that is, $(v - Proj_W(v)) \cdot w'_j = 0$ for $1 \le j \le 3$.

Solution: The conditions mean that $v \cdot w'_j = Proj_W(v) \cdot w'_j = x_j(w'_j \cdot w'_j)$ for $1 \le j \le 3$ since T' is an orthogonal set. This says $x_j = \frac{v \cdot w'_j}{w'_j \cdot w'_j}$ so from part (1),

$$x_1 = \frac{a+2b+3c+4d}{30}$$
, $x_2 = \frac{2a+b-d}{6}$, $x_3 = \frac{a-3b+3c-d}{20}$.