Math 304-6 Linear Algebra Spring 2025 Exam 1 Feingold

Show all work for each problem unless instructed otherwise.

- (1) (15 Points) Let $L_A : \mathbb{F}^5 \to \mathbb{F}^4$ be the linear function $L_A(X) = AX$ associated with the matrix $A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 6 & 7 & 8 \\ 5 & 7 & 10 & 12 & 14 \end{bmatrix}$.
- (a) Find the subspace $\text{Ker}(L_A) = \{X \in \mathbb{F}^5 \mid L_A(X) = 0\}$ as a set of vectors in terms of free variables and find a basis for it.
- (b) Find the subspace $\operatorname{Range}(L_A) = \{B = L_A(X) \in \mathbb{F}^4 \mid X \in \mathbb{F}^5\}$ by giving **consistency** conditions on the entries of the vectors $B = [b_i]$ in it.
- (c) Determine whether L_A is injective and whether L_A is surjective. Briefly explain why.

(2) (15 Points) Let
$$T : \mathbb{F}^3 \to \mathbb{F}^2$$
 and $S : \mathbb{F}^2 \to \mathbb{F}^3$ be the functions
 $T(X) = T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 - 3x_3 \\ x_1 - x_2 + 2x_3 \end{bmatrix}$ and $S(Y) = S \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 - y_2 \\ y_1 + y_2 \\ 3y_1 + 2y_2 \end{bmatrix}$.

- (a) Find the matrices A and B such that S(Y) = AY and T(X) = BX.
- (b) Use composition of functions, not matrix multiplication to find the formula for the composition $(S \circ T) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.
- (c) Use your answer to part (b) to find the matrix C such that $(S \circ T)(X) = CX$.
- (d) What should be the relationship between the matrices A, B and C? Check that your matrices satisfy that relation.
- (3) (15 Points) Answer each question separately. No justifications are needed.
- (a) For a **nonzero** matrix $A \in \mathbb{F}_7^4$, find all the possible values of r = rank(A).
- (b) For $A \in \mathbb{F}_n^m$ what condition on rank(A) = r is equivalent to the **non-homogeneous** linear system AX = B being **inconsistent** for some $B \in \mathbb{F}^m$?
- (c) For $A \in \mathbb{F}_n^m$ what condition on rank(A) = r is equivalent to the **homogeneous** linear system $AX = 0_1^m$ having **nontrivial** solutions?
- (d) If $A \in \mathbb{F}_n^m$ and $AX = 0_1^m$ has only the trivial solution, what is the **most** you can say about the relation between m and n?
- (e) What conditions on m, n and rank(A) = r would mean that $A \in \mathbb{F}_n^m$ is invertible?

- (4) (15 Points) For $A \in \mathbb{F}_n^m$, let $L_A : \mathbb{F}^n \to \mathbb{F}^m$ be the linear function $L_A(X) = AX$. For $1 \leq j \leq n$ let $\mathbf{e}_j \in \mathbb{F}^n$ be the matrix with 1 in row j and 0 in all other rows. No justifications are needed for these questions.
- (a) What relation between m and n would guarantee that L_A is **not injective**?
- (b) What relation between m and n would guarantee that L_A is **not surjective**?
- (c) If rank(A) = n what does that tell you about L_A ?
- (d) If $\operatorname{rank}(A) = m$ what does that tell you about L_A ?
- (e) What is the relationship between A and $L_A(\mathbf{e}_j)$ for $1 \le j \le n$?
- (5) (15 Points) No justifications are needed for these questions.
- (a) Let $L : \mathbb{F}^3 \to \mathbb{F}^2$ be linear with $L(\mathbf{e}_1) = \begin{bmatrix} 1\\1 \end{bmatrix}$, $L(\mathbf{e}_2) = \begin{bmatrix} 1\\2 \end{bmatrix}$, $L(\mathbf{e}_3) = \begin{bmatrix} -2\\3 \end{bmatrix}$. Find $A \in \mathbb{F}_3^2$ such that $L(X) = L_A(X) = AX$ for all $X \in \mathbb{F}^3$.
- (b) For $A \in \mathbb{F}_n^3$ find matrix E such that B = EA is the matrix obtained from A by doing to A the elementary row operation $5Row_2(A) + Row_1(A) \to Row_1(A)$.
- (c) If $S = \{v_1, \dots, v_k\}$ is an **independent** subset of \mathbb{F}^m , what is the relationship between k and m?
- (d) For $A \in \mathbb{F}_n^n$ suppose $[A|I_n]$ row reduces to [C|D] with C in RREF. When A is invertible what is C and what is D?
- (e) If $S \subseteq T \subseteq V$ and T is **dependent** in vector space V, what can you say about S?

Math 304-6 Linear Algebra Spring 2025 Exam 1 Solutions Feingold (1) (15 Points) Let $L_A : \mathbb{F}^5 \to \mathbb{F}^4$ be the linear function $L_A(X) = AX$ associated with the matrix $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 6 & 7 & 8 \\ 5 & 7 & 10 & 12 & 14 \end{bmatrix}$. (a) Find the subspace $\operatorname{Ker}(L_A) = \{X \in \mathbb{F}^5 \mid L_A(X) = 0\}$ as a set of vectors in terms

(a) Find the subspace $\text{Ker}(L_A) = \{X \in \mathbb{F}^5 \mid L_A(X) = 0\}$ as a set of vectors in terms of free variables and find a basis for it.

Solution: (6 pts) To find $\text{Ker}(L_A)$ we must solve a linear system by row reducing

$\begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 3 & 4 \\ 5 & 7 \end{bmatrix}$	$ \begin{array}{c} 1 \\ 3 \\ 6 \\ 10 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 0\\0\\0\\0\end{bmatrix}$ to	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}$	$egin{array}{ccc} 0 & -1 \ 0 & 1 \ 1 & 1 \ 0 & 0 \end{array}$	$ \begin{bmatrix} -2 & & 0 \\ 2 & & 0 \\ 1 & & 0 \\ 0 & & 0 \end{bmatrix} $	\mathbf{SO}	$x_1 = r + 2s$ $x_2 = -r - 2s$ $x_3 = -r - s$ $x_4 = r \in \mathbb{F}$ $x_5 = s \in \mathbb{F}$
$\operatorname{Ker}(L_A) =$	= { [$\begin{array}{c} r+2s \\ -r-2s \\ -r-s \\ r \\ s \end{array}$	$\in \mathbb{F}^5$	$r,s\in$	\mathbb{F}	has ba	asis $\begin{cases} \begin{bmatrix} 1\\ -\\ -\\ 1\\ 0 \end{cases} \end{cases}$	1 1 1	$, \begin{bmatrix} 2\\ -2\\ -1\\ 0\\ 1 \end{bmatrix} \right\}.$

(b) Find the subspace $\operatorname{Range}(L_A) = \{B = L_A(X) \in \mathbb{F}^4 \mid X \in \mathbb{F}^5\}$ by giving **consistency** conditions on the entries of the vectors $B = [b_i]$ in it.

Solution: (5 pts) $B = [b_i] \in \text{Range}(L_A)$ iff the following system is consistent:

Γ1	1	1	1	1	$ b_1$]		Γ1	0	0	-1	$-2 \mid$	$-2b_2+b_3$	is consistent iff
1	2	3	4	5	b_2	,	0	1	0	1	2	$3b_1 + 3b_2 - 2b_3$	is consistent iff $0 = -b_1 - b_2 - b_3 + b_4$ iff
3	4	6	7	8	b_3	\rightarrow	0	0	1	1	1	$-2b_1 - b_2 + b_3$	iff
L5	7	10	12	14	b_4		L0	0	0	0	0	$-b_1 - b_2 - b_3 + b_4$	$b_1 + b_2 + b_3 = b_4$

(c) Determine whether L_A is injective and whether L_A is surjective. Briefly explain why.

Solution: (4 pts) L_A is **not injective** since by (a) more than one vector in \mathbb{F}^5 is sent to the zero vector, and L_A is **not surjective** since by (b) not all vectors of \mathbb{F}^4 are in Range(L_A).

(2) (15 Points) Let
$$T : \mathbb{F}^3 \to \mathbb{F}^2$$
 and $S : \mathbb{F}^2 \to \mathbb{F}^3$ be the functions
 $T(X) = T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 - 3x_3 \\ x_1 - x_2 + 2x_3 \end{bmatrix}$ and $S(Y) = S \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} y_1 - y_2 \\ y_1 + y_2 \\ 3y_1 + 2y_2 \end{bmatrix}$.

(a) Find the matrices A and B such that S(Y) = AY and T(X) = BX.

Solution: (4 pts)
$$S(Y) = \begin{bmatrix} y_1 - y_2 \\ y_1 + y_2 \\ 3y_1 + 2y_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = AY$$
 and
 $T(X) = \begin{bmatrix} x_1 + 2x_2 - 3x_3 \\ x_1 - x_2 + 2x_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -3 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = BX.$

(b) Use composition of functions, not matrix multiplication, to find the formula for the composition $(S \circ T) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

Solution: (5 pts)
$$(S \circ T) \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = S \left(T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = S \begin{bmatrix} x_1 + 2x_2 - 3x_3 \\ x_1 - x_2 + 2x_3 \end{bmatrix}$$
$$= \begin{bmatrix} (x_1 + 2x_2 - 3x_3) - (x_1 - x_2 + 2x_3) \\ (x_1 + 2x_2 - 3x_3) + (x_1 - x_2 + 2x_3) \\ 3(x_1 + 2x_2 - 3x_3) + 2(x_1 - x_2 + 2x_3) \end{bmatrix} = \begin{bmatrix} 3x_2 - 5x_3 \\ 2x_1 + x_2 - x_3 \\ 5x_1 + 4x_2 - 5x_3 \end{bmatrix}.$$

(c) Use your answer to part (b) to find the matrix C such that $(S \circ T)(X) = CX$.

Solution: (3 pts)
$$(S \circ T)(X) = \begin{bmatrix} 3x_2 - 5x_3 \\ 2x_1 + x_2 - x_3 \\ 5x_1 + 4x_2 - 5x_3 \end{bmatrix} = \begin{bmatrix} 0 & 3 & -5 \\ 2 & 1 & -1 \\ 5 & 4 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = CX.$$

(d) What should be the relationship between the matrices A, B and C? Check that your matrices satisfy that relation.

Solution: (3 pts) The relationship should be that $AB = C$ (matrix multiplication). Check:										
$AB = \begin{bmatrix} 1 & -1 \\ 1 \\ 3 \end{bmatrix}$	$\begin{bmatrix} -1\\1\\2 \end{bmatrix} \begin{bmatrix} 1 & 2\\1 & -1 \end{bmatrix}$	$ \begin{bmatrix} -3\\2 \end{bmatrix} = \begin{bmatrix} (1-1)\\(1+1)\\(3+2) \end{bmatrix} $	$ \begin{array}{ccc} (2+1) & (-3-2) \\ (2-1) & (-3+2) \\ (6-2) & (-9+4) \end{array} \right] $	$=\begin{bmatrix}0\\2\\5\end{bmatrix}$	$\begin{bmatrix} 3 & -5 \\ 1 & -1 \\ 4 & -5 \end{bmatrix} = C.$					

- (3) (15 Points, 3 pts each) Answer each question separately. No justifications are needed.
- (a) For a **nonzero** matrix $A \in \mathbb{F}_7^4$, what are the possible values of r = rank(A)?

Solution: If $A \in \mathbb{F}_7^4$ is not the zero matrix, rank(A) is the number of leading ones in its RREF, so $1 \leq rank(A) \leq 4 = Min(4,7)$ since each leading one occupies a row, there is at least one, and no more than the number of rows.

(b) For $A \in \mathbb{F}_n^m$ what condition on rank(A) = r is equivalent to the **non-homogeneous** linear system AX = B being **inconsistent** for some $B \in \mathbb{F}^m$?

Solution: For r = rank(A) < m we have AX = B is inconsistent for some B because [A|B] row reduces to [C|D] with C in RREF, and C has at least one row of zeros, giving a consistency condition.

(c) For $A \in \mathbb{F}_n^m$ what condition on rank(A) = r is equivalent to the **homogeneous** linear system $AX = 0_1^m$ having **nontrivial** solutions?

Solution: When r = rank(A) < n the linear system AX = 0 has nontrivial solutions since there are n - r > 0 free variables corresponding to non-pivot columns in the RREF.

(d) If $A \in \mathbb{F}_n^m$ and $AX = 0_1^m$ has only the trivial solution, what is the **most** you can say about the relation between m and n?

Solution: If n > m then AX = 0 would have at least one free variable, giving nontrivial solutions. By the contrapositive, n > m is false so we must have $n \le m$.

(e) What conditions on m, n and rank(A) would mean that $A \in \mathbb{F}_n^m$ is invertible?

Solution: A is invertible when m = n = rank(A).

- (4) (15 Points, 3 pts each) For $A \in \mathbb{F}_n^m$, let $L_A : \mathbb{F}^n \to \mathbb{F}^m$ be the linear function $L_A(X) = AX$. For $1 \leq j \leq n$ let $\mathbf{e}_j \in \mathbb{F}^n$ be the matrix with 1 in row j and 0 in all other rows. No justifications are needed for these questions.
- (a) What relation between m and n would guarantee that L_A is **not injective**?

Solution: If n > m then L_A is not injective since there would be free variables in the solution to $L_A(X) = 0_1^m$, giving a nontrivial kernel.

(b) What relation between m and n would guarantee that L_A is **not surjective**?

Solution: If n < m then L_A is not surjective since more equations than variables guarantees a row of zeros in the RREF of A, giving a consistency condition for AX = B.

(c) If $\operatorname{rank}(A) = n$ what does that tell you about L_A ?

Solution: If rank(A) = n then L_A is injective since n leading ones in the RREF means a leading one in each column and there are no free variables in $AX = 0_1^m$.

(d) If $\operatorname{rank}(A) = m$ what does that tell you about L_A ?

Solution: If rank(A) = m then L_A is surjective since m leading ones in the RREF means no zero rows so AX = B is always consistent.

(e) What is the relationship between A and $L_A(\mathbf{e}_i)$ for $1 \leq j \leq n$?

Solution: For $1 \le j \le n$, $L_A(\mathbf{e}_j) = Col_j(A)$ is the j^{th} column of A.

- (5) (15 Points, 3 pts each) No justifications are needed for these questions.
- (a) Let $L : \mathbb{F}^3 \to \mathbb{F}^2$ be linear with $L(\mathbf{e}_1) = \begin{bmatrix} 1\\1 \end{bmatrix}$, $L(\mathbf{e}_2) = \begin{bmatrix} 1\\2 \end{bmatrix}$, $L(\mathbf{e}_3) = \begin{bmatrix} -2\\3 \end{bmatrix}$. Find $A \in \mathbb{F}_3^2$ such that $L(X) = L_A(X) = AX$ for all $X \in \mathbb{F}^3$.

Solution: The $A \in \mathbb{F}_3^2$ such that $L(X) = L_A(X) = AX$ for all $X \in \mathbb{F}^3$ would have to satisfy $L(\mathbf{e}_j) = A\mathbf{e}_j = Col_j(A)$ for j = 1, 2, 3, so $A = \begin{bmatrix} 1 & 1 & -2 \\ 1 & 2 & 3 \end{bmatrix}$.

(b) For $A \in \mathbb{F}_n^3$ find matrix E such that B = EA is the matrix obtained from A by doing to A the elementary row operation $5Row_2(A) + Row_1(A) \to Row_1(A)$.

Solution: $E = \begin{bmatrix} 1 & 5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ obtained by doing the row operation to I_3 .

(c) If $S = \{v_1, \dots, v_k\}$ is an **independent** subset of \mathbb{F}^m , what is the relationship between k and m?

Solution: $k \leq m$ since m is the maximum size of an independent set in \mathbb{F}^m .

(d) For $A \in \mathbb{F}_n^n$ suppose $[A|I_n]$ row reduces to [C|D] with C in RREF. When A is invertible what is C and what is D?

Solution: A is invertible when $C = I_n$, in which case $D = A^{-1}$.

(e) If $S \subseteq T \subseteq V$ and T is **dependent** in vector space V, what can you say about S?

Solution: S could be either independent or dependent.