Math 304-6 Linear Algebra Spring 2025 Exam 2 Feingold

SHOW ALL NECESSARY WORK FOR EACH PROBLEM

(1) (10 Points)
$$A = \begin{bmatrix} 1 & 1 & -1 & 1 & 0 \\ 2 & 1 & 0 & -1 & 5 \\ 3 & 1 & 1 & 1 & 2 \\ 4 & 1 & 2 & -1 & 7 \end{bmatrix}$$
 row reduces to $C = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.
Let $L_A : \mathbb{F}^5 \to \mathbb{F}^4$ be the linear map $L_A(X) = AX$.

(a) (2 Points) Find a **basis** for Row(A), the row space of A.

- (b) (2 Points) Find a **basis** for $Ker(L_A) = Nul(A)$, the kernel of L_A .
- (c) (2 Points) Find a **basis** for $Range(L_A) = Col(A)$.
- (d) (4 Points) For each free variable in $Ker(L_A)$, find a dependence relation among the columns of A and use it to write a **non-pivot** column as a linear combination of previous pivot columns.
- (2) (10 Pts) Answer each question **separately**. V and W are vector spaces over \mathbb{F} .
- (a) Find the elementary matrix E such that for any $A \in \mathbb{F}_n^3$, EA is the matrix obtained from A by multiplying row 3 of A by 7.
- (b) If $S = \{v_1, v_2, \ldots, v_n\}$ is an **independent** subset of V, and $L: V \to W$ is **injective**, what is the most you can be sure about $L(S) = \{L(v_1), L(v_2), \dots, L(v_n)\}$ in W?
- (c) If $S = \{v_1, v_2, \ldots, v_m\}$ is **dependent** in V, and linear map $L: V \to W$ is **injective**, what is the most you can be sure about $L(S) = \{L(v_1), \ldots, L(v_m)\}$?
- (d) In W let $T = \{w_1, w_2, \dots, w_{m-1}\}$ and $T' = \{w_1, w_2, \dots, w_{m-1}, w_m\}$ where the last vector $w_m \in \langle T \rangle$ is a linear combination of the previous vectors. What is the relationship between $\langle T \rangle$ and $\langle T' \rangle$?
- (e) If $S = \{v_1, v_2, \dots, v_n\}$ is **independent** in V and $v \in \langle S \rangle$ and $T = \{v_1, v_2, \dots, v_n, v\}$, then what is the most you can be sure about $dim(\langle T \rangle)$?
- (3) (10 points) Answer each question separately.
- (a) If L: F₃³ → F⁹ is **injective**, what is the most you can be sure about L?
 (b) If L: F³ → F⁸ what are all the possibilities for dim(Range(L))?
- (c) If $L: \mathbb{F}^7 \to \mathbb{F}^4$ what are all the possibilities for dim(Ker(L))?
- (d) If $A \in \mathbb{F}_n^n$ and the homogeneous linear system AX = 0 has **non-trivial** solutions, then what is the most you can be sure about det(A)?
- (e) Let $A \in \mathbb{F}_n^n$ be invertible and suppose a non-zero $X \in \mathbb{F}^n$ satisfies $AX = \lambda X$ for some $\lambda \in \mathbb{F}$. Why can you be sure that $\lambda \neq 0$?
- (4) (10 Pts) Answer each question separately. (a) (5 Pts) $S = \left\{ v_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, v_2 = \begin{bmatrix} 1\\2\\3\\3 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \right\}$ is a basis of \mathbb{F}^3 . For $v = \begin{bmatrix} a\\b\\c \end{bmatrix}$ find the coordinate vector $[v]_S$ with respect to S.
- (b) (5 Pts) $T = \{t^2, t^2 + t, t^2 + t + 1\}$ is a basis of \mathcal{P}_2 (polynomials of degree at most 2). For $p = at^2 + bt + c$ find the coordinate vector $[p]_T$ with respect to T.

- (5) (10 Points) Answer each question separately.
- (a) Determine whether $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{bmatrix}^{T}$ is invertible, and find A^{-1} if it is.
- (b) Let $E \in \mathbb{F}_n^n$ be an elementary matrix corresponding to an elementary switcher row operation. What can you say about det(E)?
- (c) Suppose $A \in \mathbb{F}_n^n$ has characteristic polynomial $\det(\lambda I_n - A) = (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdots (\lambda - \lambda_r)^{k_r}$ with *r* distinct eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_r$ in \mathbb{F} . What is the most you can say about the sum of all the algebraic multiplicities, $k_1 + k_2 + \cdots + k_r$?
- (d) With notation as in part (c), let $A_{\lambda_i} = \{X \in \mathbb{F}^n \mid AX = \lambda_i X\}$ be the λ_i eigenspace of A. What is the **geometric multiplicity** g_i of A?
- (e) If $A^T = A^{-1}$ for $A \in \mathbb{F}_n^n$, what is the most you can say about det(A)?
- (6) (10 Points) Let $L : \mathbb{F}^2 \to \mathbb{F}^3$ be given by $L \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 2a+3b \\ -a+b \\ 4a-5b \end{bmatrix}$.

Let $S = \{v_1, v_2\}$ be the standard basis of \mathbb{F}^2 and let $T = \{w_1, w_2, w_3\}$ be the standard basis of \mathbb{F}^3 . Let other ordered bases be

$$S' = \left\{ v'_1 = \begin{bmatrix} 1\\2 \end{bmatrix}, v'_2 = \begin{bmatrix} 1\\3 \end{bmatrix} \right\} \quad \text{and } T' = \left\{ w'_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, w'_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, w'_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}.$$

- (a) (2 pts) Find the matrix $_T[L]_S$ representing L from S to T.
- (b) (3 pts) Find the matrix $_{T'}[L]_{S'}$ representing L from S' to T' without using transition matrices. Do it directly by row reducing [T'|L(S')].
- (c) (3 pts) Find the transition matrices ${}_{S}P_{S'}$, ${}_{T}Q_{T'}$ and ${}_{T'}Q_{T} = ({}_{T}Q_{T'})^{-1}$.
- (d) (2 pts) Using your answers from parts (a) and (c), explicitly multiply out $_{T'}Q_T T[L]_S SP_{S'}$ and compare it to your answer for $_{T'}[L]_{S'}$ from part (b). What was their relationship, and what should it have been?

(7) (15 Points) Let
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
.

- (a) (5 pts) Find $Char_A(\lambda) = \det(\lambda I_4 A)$, the characteristic polynomial of A.
- (b) (2 pts) Find the eigenvalues λ_i of A and their algebraic multiplicities k_i .
- (c) (6 pts) For each eigenvalue λ_i of A, find a **basis** of its eigenspace A_{λ_i} .
- (d) (2 pts) Is A diagonalizable? Explain why. If it is, give a diagonal D similar to A.

Math 304-6 Linear Algebra Spring 2025 Exam 2 Solutions Feingold (1) (10 Points) (a) (2 Points)

$$A = \begin{bmatrix} 1 & 1 & -1 & 1 & 0 \\ 2 & 1 & 0 & -1 & 5 \\ 3 & 1 & 1 & 1 & 2 \\ 4 & 1 & 2 & -1 & 7 \end{bmatrix} \text{ row reduces to } C = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ so}$$

 $\{ \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & -2 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & -2 \end{bmatrix} \}$ is a basis for Row(A).

(b) (2 Points) A basis for $Ker(L_A) = Nul(A)$ is found by row reducing $[A|\mathbf{0}_1^4]$ to $[C|\mathbf{0}_1^4]$, interpreting the solutions in \mathbb{F}^5 , and separating the free variables to get two independent vectors which span it:

$$\left\{ \begin{bmatrix} -r-s\\2r-s\\r\\2s\\s \end{bmatrix} = r \begin{bmatrix} -1\\2\\1\\0\\0 \end{bmatrix} + s \begin{bmatrix} -1\\-1\\0\\2\\1 \end{bmatrix} \in \mathbb{F}^5 \mid r, s \in \mathbb{F} \right\} \text{ so } \left\{ \begin{bmatrix} -1\\2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\-1\\0\\2\\1 \end{bmatrix} \right\}$$

is a basis for $Ker(L_A)$.

(c) (2 Points) A basis for Col(A) consists of the three pivot columns of A, the columns with leading ones in the RREF C, that is, $\{Col_1(A), Col_2(A), Col_4(A)\}$. Other correct answers can be obtained by linear combinations of those three columns, for example,

(ך 1 ק		07		6 07		
	0		1		0		
Ì	0	,	0	,	1		?
l			_1_		1	J	

(d) (4 Points) Each basis vector in $Ker(L_A)$ gives a dependence relation among the columns of A. The two dependence relations obtained that way are:

$$-1Col_1(A) + 2Col_2(A) + Col_3(A) = \mathbf{0}_1^4$$

and

$$-1Col_1(A) - 1Col_2(A) + 2Col_4(A) + Col_5(A) = \mathbf{0}_1^4$$

so the two non-pivot columns are the linear combinations of previous pivot columns

$$Col_3(A) = Col_1(A) - 2Col_2(A)$$
 and $Col_5(A) = Col_1(A) + Col_2(A) - 2Col_4(A).$

- (2) (10 Points, 2 points each)
- (a) For elementary matrix $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix}$, obtained by doing the row operation to I_3 ,

EA is the matrix obtained from A by multiplying row 3 of A by 7.

- (b) If $S = \{v_1, v_2, \dots, v_n\}$ is independent in V, and $L : V \to W$ is injective, then you be sure that $L(S) = \{L(v_1), L(v_2), \dots, L(v_n)\}$ is an independent subset of Range(L).
- (c) If $S = \{v_1, v_2, \ldots, v_m\}$ is **dependent** in V, and linear map $L : V \to W$ is **injective**, you can be sure that $L(S) = \{L(v_1), \ldots, L(v_m)\}$ is **dependent**.
- (d) In W let $T = \{w_1, w_2, \dots, w_{m-1}\}$ and $T' = \{w_1, w_2, \dots, w_{m-1}, w_m\}$ where the last vector $w_m \in \langle T \rangle$ is a linear combination of the previous vectors. The relationship is $\langle T \rangle = \langle T' \rangle$ since w_m is redundant in T'.
- (e) If $S = \{v_1, v_2, \dots, v_n\}$ is **independent** in V and $v \in \langle S \rangle$, then $T = \{v_1, v_2, \dots, v_n, v\}$ is **dependent** since v is redundant, so $\langle T \rangle = \langle S \rangle$ has basis S so $dim(\langle T \rangle) = n$.
- (3) (10 Points, 2 points each)
- (a) Use $\dim(V) = \dim(Ker(L)) + \dim(Range(L))$. L injective means $\dim(Ker(L)) = 0$ so $\dim(V) = \dim(\mathbb{F}_3^3) = 9 = \dim(Range(L)) = \dim(\mathbb{F}^9)$, so $Range(L) = \mathbb{F}^9$ so L is surjective. L is thus bijective, invertible and an isomorphism.
- (b) $L : \mathbb{F}^3 \to \mathbb{F}^8$ so $3 = \dim(Ker(L)) + \dim(Range(L))$ and $0 \le \dim(Ker(L)) \le 3$ so $0 \le \dim(Range(L)) \le 3$.
- (c) $L: \mathbb{F}^7 \to \mathbb{F}^4$ so $7 = \dim(\mathbb{F}^7) = \dim(Ker(L)) + \dim(Range(L))$ and $0 \leq \dim(Range(L)) \leq 4$ so $3 \leq \dim(Ker(L)) \leq 7$.
- (d) If $A \in \mathbb{F}_n^n$ and the homogeneous linear system AX = 0 has **non-trivial** solutions, then you can be sure that rank(A) < n so det(A) = 0.
- (e) Let $A \in \mathbb{F}_n^n$ be **invertible** and suppose a **non-zero** $X \in \mathbb{F}^n$ satisfies $AX = \lambda X$ for some $\lambda \in \mathbb{F}$. Then $\lambda \neq 0$ because otherwise $AX = \mathbf{0}$ has a **non-trivial** solution so Rank(A) < n so A could not be invertible.

(4) (10 Points) (a) (5 Pts) To solve
$$x_1v_1 + x_2v_2 + x_3v_3 = v$$
 row reduce

$$\begin{bmatrix} 1 & 1 & 0 & | a \\ 1 & 2 & 1 & | b \\ 1 & 3 & 1 & | c \\ s & s & | v \end{bmatrix}$$
 to
$$\begin{bmatrix} 1 & 0 & 0 & | a+b-c \\ 0 & 1 & 0 & | -b+c \\ 0 & 0 & 1 & | -a+2b-c \\ x \end{bmatrix}$$
 so $[v]_S = \begin{bmatrix} a+b-c \\ -b+c \\ -a+2b-c \end{bmatrix}$.

- (b) (5 Pts) To write p as a linear combination from T, solve the equation $x_1(t^2) + x_2(t^2 + t) + x_3(t^2 + t + 1) = at^2 + bt + b.$ Compare coefficients of each power of t on both sides to get the linear system $x_1 + x_2 + x_3 = a, x_2 + x_3 = b, x_3 = c.$ To solve that, row reduce $\begin{bmatrix} 1 & 1 & 1 & | a \\ 0 & 1 & 1 & | b \\ 0 & 0 & 1 & | c \\ p \end{bmatrix}$ to $\begin{bmatrix} 1 & 0 & 0 & | a - b \\ 0 & 1 & 0 & | b - c \\ 0 & 0 & 1 & | c \\ I_3 & I_3 & I & I \end{bmatrix}$. So $[p]_T = \begin{bmatrix} a - b \\ b - c \\ c \end{bmatrix}$. We can check that
 - $(a-b)t^{2} + (b-c)(t^{2}+t) + c(t^{2}+t+1) = at^{2} + bt + c.$

(5) (10 Points, 2 points each) Answer each question separately.

(a) $A =$	$ \begin{array}{c c} 1\\ 1\\ 0\end{array} $	$2 \\ 0 \\ 1$	$\begin{array}{c}3\\2\\0\end{array}$	is ir	nvertible and A^-	$^{1} =$	-	-2 0 1	$ \begin{array}{c} 3 \\ 0 \\ -1 \end{array} $	$\begin{array}{c} 4\\ 1\\ -2 \end{array}$	because
$\begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ I_3 \end{bmatrix}$	0 0 1	reduces to	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	0 1 0 I ₃	${0 \\ 0 \\ 1}$		$3 \\ 0 \\ -1 \\ A^{-1}$	$\begin{bmatrix} 4\\1\\-2 \end{bmatrix}.$

- (b) If $E \in \mathbb{R}^n_n$ is an elementary matrix corresponding to an elementary **switcher** row operation then $\det(E) = -1$.
- (c) If $A \in \mathbb{F}_n^n$ has characteristic polynomial $\det(\lambda I_n - A) = (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdots (\lambda - \lambda_r)^{k_r}$ with *r* distinct eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_r$ then $k_1 + k_2 + \cdots + k_r = n$ is the degree of that polynomial.
- (d) With notation as in part (c), let $A_{\lambda_i} = \{X \in \mathbb{F}^n \mid AX = \lambda_i X\}$ be the λ_i eigenspace of A. The **geometric multiplicity** of A is $g_i = dim(A_{\lambda_i})$.
- (e) If $A^T = A^{-1}$ for $A \in \mathbb{F}_n^n$, then $\det(A) = \det(A^T) = \det(A^{-1}) = \frac{1}{\det(A)}$ so $(\det(A))^2 = 1$ so $\det(A) = \pm 1$.

(6) (10 Points)

$$\begin{array}{l} \text{(a)} \ (2 \operatorname{Pts}) L(S): \ L(v_1) = \begin{bmatrix} 2\\ -1\\ 4 \end{bmatrix}, \ L(v_2) = \begin{bmatrix} 3\\ 1\\ -5 \end{bmatrix}. \ \operatorname{Then} \left[T \mid L(S)\right] = \begin{bmatrix} 1 & 0 & 0 & 2 & 3\\ 0 & 1 & 0 & 0 & -1 & 1\\ 0 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & 4 & -5 \end{bmatrix} \\ \text{so} \ _T[L]_S = \begin{bmatrix} 2 & 3\\ -1 & 1\\ 4 & -5 \end{bmatrix}. \\ \begin{array}{l} \text{(b)} \ (3 \operatorname{Pts}) \operatorname{Find} L(S'): \ L(v_1') = \begin{bmatrix} 8\\ 1\\ -6 \end{bmatrix}, \ L(v_2') = \begin{bmatrix} 11\\ 2\\ -11 \end{bmatrix}. \ \operatorname{Row reduce} \\ \begin{bmatrix} 1 & 0 & 1 & 8 & 11\\ 1 & 1 & 1 & 2\\ 0 & 1 & 1 & -6 & -11\\ L(S') \end{bmatrix} \ \text{to} \ \begin{bmatrix} 1 & 0 & 0 & 7 & 13\\ 0 & 1 & 0 & -7 & -9\\ 0 & 0 & 1 & 1 & -2\\ T'(L]_{S'} \end{bmatrix} \ \text{so} \ _{T'}[L]_{S'} = \begin{bmatrix} 7 & 13\\ -7 & -9\\ 1 & -2 \end{bmatrix}. \\ \begin{array}{l} \text{(c)} \ (3 \operatorname{Pts}) \ _{S}P_{S'} = \begin{bmatrix} 1 & 1\\ 2 & 3 \end{bmatrix} \ \text{and} \ _{T}Q_{T'} = \begin{bmatrix} 1 & 0 & 1\\ 1 & 1 & 1\\ 0 & 1 & 1\\ 0 & 1 & 1 \end{bmatrix} \ \text{since} \ S \ \text{and} \ T \ \text{are standard bases.} \\ \text{To get} \ _{T'}Q_T = (_{T}Q_{T'})^{-1}, \ \text{row reduce} \\ \end{array}$$

$$\begin{array}{l} \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0\\ 0 & 1 & 1 & 1 & -1 & 1\\ 0 & 1 & 1 & 0 & 0\\ 0 & 1 & 1 & -1 & 1\\ 0 & 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1 & -1 & 1\\ 0 & 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1 & -1 & 1\\ \end{array} \right] \ \text{so} \ _{T'}Q_T = \begin{bmatrix} 0 & 1 & -1\\ -1 & 1 & 0\\ 1 & -1 & 1 \end{bmatrix}. \\ \begin{array}{l} \text{(d)} \ (2 \operatorname{Pts}) \ (T'Q_T)(T[L]_S)(SP_{S'}) = \\ \begin{bmatrix} 0 & 1 & -1\\ -1 & 1 & 0\\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3\\ -1 & -1\\ 1 & 4 & -5 \end{bmatrix} \ \begin{bmatrix} 1 & 1\\ 2 & 3 \end{bmatrix} = \begin{bmatrix} -5 & 6\\ -3 & -2\\ 7 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1\\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 7 & 13\\ -7 & -9\\ 1 & -2 \end{bmatrix} = \\ T'[L]_{S'} \ \text{is the relationship, as it should be according to a theorem we proved in class.} \end{array}$$

$$(7) (15 \text{ Points}) \text{ Let } A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

$$(a) (5 \text{ points}) Char_A(\lambda) = \det(\lambda I_4 - A) = \det(A - \lambda I_4) = \\ \det \begin{bmatrix} 1 - \lambda & 0 & 1 & 0 \\ 0 & 1 - \lambda & 0 & 1 \\ 1 & 0 & 1 - \lambda & 0 \\ 0 & 1 & 0 & 1 - \lambda \end{bmatrix} = \det \begin{bmatrix} -\lambda & 0 & \lambda & 0 \\ 0 & -\lambda & 0 & \lambda \\ 1 & 0 & 1 - \lambda & 0 \\ 0 & 1 & 0 & 1 - \lambda \end{bmatrix} = \\ \lambda^2 \det \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & 1 - \lambda & 0 \\ 0 & 1 & 0 & 1 - \lambda \end{bmatrix} = \lambda^2 \det \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 2 - \lambda & 0 \\ 0 & 0 & 0 & 2 - \lambda \end{bmatrix} = \lambda^2 (\lambda - 2)^2$$

- (b) (2 points) The **eigenvalues** of A are $\lambda_1 = 0$ and $\lambda_2 = 2$ with corresponding **algebraic** multiplicities $k_1 = 2$ and $k_2 = 2$.
- (c) (6 points) For each eigenvalue λ_i of A, find a **basis** of its eigenspace A_{λ_i} by solving the homogeneous linear system $[A - \lambda_i I_4 | 0_1^4]$. For $\lambda_1 = 0$, row reduce $[A|0_1^4] = \begin{bmatrix} 1 & 0 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & 1 & 0 & | & 0 \\ 1 & 0 & 1 & 0 & | & 0 \end{bmatrix}$ to $\begin{bmatrix} 1 & 0 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$ so $x_1 = -r$ so $x_2 = -s$ $x_2 = -s$, then

$$\begin{bmatrix} 1 & 0 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & 1 & | & 0 \end{bmatrix} \overset{\text{co}}{=} \begin{bmatrix} 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \overset{\text{co}}{=} x_3 = r \in \mathbb{F}, \text{ other}$$
$$x_4 = s \in \mathbb{F}$$
$$A_{\lambda_1} = \left\{ \begin{bmatrix} -r \\ -s \\ r \\ s \end{bmatrix} \in \mathbb{F}^4 \mid r, s \in \mathbb{F} \right\} \text{ has basis } T_1 = \left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

For $\lambda_2 = 2$, row reduce $[A - 2I_4|0_1^4] =$

$$\begin{bmatrix} -1 & 0 & 1 & 0 & | & 0 \\ 0 & -1 & 0 & 1 & | & 0 \\ 1 & 0 & -1 & 0 & | & 0 \\ 0 & 1 & 0 & -1 & | & 0 \end{bmatrix}$$
to
$$\begin{bmatrix} 1 & 0 & -1 & 0 & | & 0 \\ 0 & 1 & 0 & -1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$
so
$$\begin{bmatrix} x_1 = r \\ s_2 = s \\ x_3 = r \in \mathbb{F} \\ x_4 = s \in \mathbb{F} \end{bmatrix}$$
then
$$A_{\lambda_2} = \left\{ \begin{bmatrix} r \\ s \\ r \\ s \end{bmatrix} \in \mathbb{F}^4 \mid r, s \in \mathbb{F} \right\}$$
has basis
$$T_2 = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right\}.$$