NA	ME (Printed):				
		Linear Algebra		Quiz 2	Feingold
be let	an $m \times n$ matrix w	ith entries from fiel- he function associate	$d \mathbb{F}, \text{ let } 0 \in \mathbb{F}^m$	be the $m \times$	roblems, let $A \in \mathbb{F}_n^m$ and $A \in \mathbb{F}_n^m$ and $A \in \mathbb{F}_n^m$ because $A = A = A = A = A = A = A = A = A = A $
(1)	1) If A row reduces to matrix C in RREF with r non-zero rows, then the homogeneous linear system $AX = 0$ has free variables from \mathbb{F} in its solution.				
(2)	If the linear system $AX = 0$ has only the trivial solution, then $rank(A) = \underline{\hspace{1cm}}$.				
(3)	(3) If the linear system $AX = B$ is consistent for any $B \in \mathbb{F}^m$, then $rank(A) = \underline{\hspace{1cm}}$.				
(4) If $rank(A) = m$ then as a function L_A is					
(5) If $rank(A) = n$ then as a function L_A is					
(6)	(6) In general, for $A \in \mathbb{F}_n^m$, we only know that $rank(A) \leq \underline{\hspace{1cm}}$.				
(7)	(7) If $m > n$ then as a function L_A cannot be				
(8)	If $m < n$ then as a	a function L_A cann	ot be		
(9)	If L_A is bijective ((both injective and s	surjective) then	$\underline{} = ran$	$k(A) = \underline{\qquad}$

Math 304-6 Linear Algebra Spring 2025 Quiz 2 Solutions Feingold INSTRUCTIONS: **Fill in the blank for each problem**. For all problems, let $A \in \mathbb{F}_n^m$ be an $m \times n$ matrix with entries from field \mathbb{F} , let $\mathbf{0} \in \mathbb{F}^m$ be the $m \times 1$ zero matrix, and let $L_A : \mathbb{F}^n \to \mathbb{F}^m$ be the function associated with A defined as $L_A(X) = AX$. Each fill-in blank is worth one point.

- (1) If A row reduces to matrix C in RREF with r non-zero rows, then the homogeneous linear system $AX = \mathbf{0}$ has n r free variables in its solution.
- (2) If the linear system $AX = \mathbf{0}$ has only the trivial solution, then $rank(A) = \underline{n}$.
- (3) If the linear system AX = B is consistent for any $B \in \mathbb{F}^m$, then $rank(A) = \underline{m}$.
- (4) If rank(A) = m then then as a function L_A is <u>onto</u> or surjective.
- (5) If rank(A) = n then then as a function L_A is one to one or injective.
- (6) In general, for $A \in \mathbb{F}_n^m$, we only know that $rank(A) \leq Min(m, n)$.
- (7) If m > n then then as a function L_A cannot be $\underline{surjective}$ since $rank(A) = r \le n < m$ so there are consistency conditions on B for AX = B.
- (8) If m < n then then as a function L_A cannot be <u>injective</u> since $rank(A) = r \le m < n$ so there are n r > 0 free variables in the solutions to $AX = \mathbf{0}$.
- (9) If L_A is bijective (both injective and surjective) then $\underline{m} = rank(A) = \underline{n}$.