NAME (Printed):

(1) (4 Pts) Use that information to write a single equation that gives all dependence relations among the vectors in S in terms of the three free variables.

(2) (3 Pts) For each free variable found in the answer to part (1), get an equation that expresses a vector in S as a linear combination of **previous** vectors in S.

^{(3) (3} Pts) Use your answer to part (2) to remove **redundant** vectors from S and give the smallest subset $T \subset S$ such that T is **independent** and $\langle T \rangle = \langle S \rangle$, that is, the span of T is the same as the span of S.

Math 304-6 Linear Algebra Spring 2025 Quiz 5 Solutions Feingold INSTRUCTIONS: Show all calculations needed to justify your answers. $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$

Let
$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & 0 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \end{bmatrix}$$
 and let $S = \{v_1, v_2, v_3, v_4, v_5\}$ where $v_j = Col_j(A) \in \mathbb{R}^4$.

Note that $AX = \theta = 0^4_1$ is solved by row reducing

$\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$	$2 \\ 3 \\ 4 \\ 5$	3 4 5 6	$4 \\ 5 \\ 6 \\ 7$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	to	$\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}$	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{array} $	$-1 \\ 2 \\ 0 \\ 0$	$-2 \\ 3 \\ 0 \\ 0$	$ \begin{array}{c} -3 \\ 4 \\ 0 \\ 0 \end{array} $	$\begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$	$x_1 = r + 2s + 3t$ $x_2 = -2r - 3s - 4t$ so $x_3 = r \in \mathbb{R}$ $x_4 = s \in \mathbb{R}$
$\lfloor 4$	5	6	7	8 0		Lo	0	0	0	0	0	$\begin{array}{l} x_4 \equiv s \in \mathbb{R} \\ x_5 = t \in \mathbb{R} \end{array}$

(1) (4 Pts) Use that information to write a single equation that gives all dependence relations among the vectors in S in terms of the three free variables.

Solution: To find all dependence relations on S we must solve the homogeneous linear system $\sum_{j=1}^{5} x_j v_j = \theta$, which is $AX = 0_1^4$. The solutions found by row reduction of $[A|0_1^4]$ tell us that all dependence relations on S are:

$$(r+2s+3t)v_1 + (-2r-3s-4t)v_2 + rv_3 + sv_4 + tv_5 = \theta \quad \text{for any } r, s, t \in \mathbb{R}.$$

(2) (3 Pts) For each free variable found in the answer to part (1), get an equation that expresses a vector in S as a linear combination of previous vectors in S. Solution:
For r = 1, s = 0, t = 0 we get 1v₁ - 2v₂ + 1v₃ = θ so v₃ = -v₁ + 2v₂.

For r = 0, s = 1, t = 0 we get $2v_1 - 3v_2 + 1v_4 = \theta$ so $v_4 = -2v_1 + 3v_2$.

For r = 0, s = 0, t = 1 we get $3v_1 - 4v_2 + 1v_5 = \theta$ so $v_5 = -3v_1 + 4v_2$.

(3) (3 Pts) Use your answer to part (2) to remove **redundant** vectors from S and give the smallest subset $T \subset S$ such that T is **independent** and $\langle T \rangle = \langle S \rangle$, that is, the span of T is the same as the span of S.

Solution: The answers to part (2) show that $v_3, v_4, v_5 \in \langle v_1, v_2 \rangle$ so the last three vectors are redundant in S and $T = \{v_1, v_2\}$ has the same span as S. T is independent since the row reduction in part (1) done only with the first two columns of A has only the trivial solution.