NAME (Printed):

	Math 304-6	Linear Algebra	Spring 2025	Quiz 7	Feingold
Show all work needed to justify your answers.					
Carry out the following steps to diagonalize $A = \begin{bmatrix} 12 & -5 \\ 30 & -13 \end{bmatrix}$.					
(1) ((2 Pts) Find det($(t - \lambda_1)(t - \lambda_2)$ to	$(A - tI_2) = \det \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ get the eigenvalues	$\begin{bmatrix} 2-t & -5\\ 30 & -13-t \end{bmatrix}$ s λ_1 and λ_2 .	and write	it in factored form
(2) (2) (2 Pts) Find a basis vector w_1 for the λ_1 -eigenspace by solving $[A - \lambda_1 I_2 0]$.				
(3) (3) (2 Pts) Find a basis vector w_2 for the λ_2 -eigenspace by solving $[A - \lambda_2 I_2 0]$.				
(4) ((2 Pts) Find the in	nvertible matrix P	whose columns a	re w_1 and u	v_2 , and find P^{-1} .

(5) (2 Pts) Compute $P^{-1}AP$ and verify that it is the diagonal matrix D with diagonal entries λ_1 and λ_2 .

Math 304-6 Linear Algebra Spring 2025 Quiz 7 Solutions Feingold Show all work needed to justify your answers. Carry out the following steps to diagonalize $A = \begin{bmatrix} 12 & -5 \\ 30 & -13 \end{bmatrix}$.

(1) (2 Pts) det $(A - tI_2)$ = det $\begin{bmatrix} 12 - t & -5 \\ 30 & -13 - t \end{bmatrix}$ = $(12 - t)(-13 - t) - (-5)(30) = t^2 + t - 156 + 150 = t^2 + t - 6 = (t - 2)(t + 3)$ so the eigenvalues of A are $\lambda_1 = 2$ and $\lambda_2 = -3$.

(2) (2 Pts) The λ_1 -eigenspace is found by solving $[A - 2I_2|0]$. Row reduce

 $\begin{bmatrix} 10 & -5 & | & 0 \\ 30 & -15 & | & 0 \end{bmatrix}$ to $\begin{bmatrix} 2 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$ so $2x_1 = x_2$ has basis vector $w_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

(3) (2 Pts) The λ_2 -eigenspace is found by solving $[A + 3I_2|0]$. Row reduce

 $\begin{bmatrix} 15 & -5 & | & 0 \\ 30 & -10 & | & 0 \end{bmatrix}$ to $\begin{bmatrix} 3 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$ so $3x_1 = x_2$ has basis vector $w_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

- (4) (2 Pts) The invertible matrix $P = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$ and $P^{-1} = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}$.
- (5) (2 Pts)

$$P^{-1}AP = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 12 & -5 \\ 30 & -13 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 6 & -2 \\ 6 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$$

is the diagonal matrix D with diagonal entries λ_1 and λ_2 .