NAME (Printed):

Math 304-6	Linear Algebra	Spring 2025	Quiz 8	Feingold
Show all work needed to justify your answers.				
(1) (2 Pts) Compute α	$\det \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 3 & 2 & 3 \\ 3 & 2 & 3 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix}.$			
(2) (2 Pts) If $det(A) = 3$ for $A \in \mathbb{R}_5^5$, find $det(2A)$.				
(3) (2 Pts) If $A \in \mathbb{R}^4_4$ with $Char_A(t) = (t-1)^3(t-2)$, what are all the possibilities for the geometric multiplicities $g_1 = \dim(A_1)$ and $g_2 = \dim(A_2)$.				
(4) (2 Pts) If det(A) = 2, det(B) = 3 and det(C) = 5, find det(A ² B ^T C ⁻¹) where B ^T means B transpose.				
(5) (2 Pts) For $A =$	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	a basis for the 0	-eigenspace	A_0 .

Math 304-6 Linear Algebra Spring 2025 Quiz 8 Solutions Feingold Show all work needed to justify your answers. (1) (2 Pts) det $\begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 3 & 2 & 3 \\ 3 & 2 & 3 & 2 \\ 1 & 1 & 1 & 1 \end{bmatrix} = det \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & 0 & -1 \\ 0 & -4 & 0 & -4 \\ 1 & 1 & 1 & 1 \end{bmatrix} = det \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} = 0$ by using elementary adder row operations to get a matrix with a zero row.

- (2) (2 Pts) If det(A) = 3 for $A \in \mathbb{R}_5^5$, then $det(2A) = 2^5 det(A) = (32)(3) = 96$ by factoring out a 2 from each of the five rows of 2A.
- (3) (2 Pts) If $A \in \mathbb{R}_4^4$ with $Char_A(t) = (t-1)^3(t-2)$, then by the theorem which says $1 \leq g_i \leq k_i$, the possibilities are $1 \leq g_1 \leq 3$ and $g_2 = 1$ since the algebraic multiplicities are $k_1 = 3$ and $k_2 = 1$.
- (4) (2 Pts) If det(A) = 2, det(B) = 3 and det(C) = 5, then

$$\det(A^2 B^T C^{-1}) = (\det(A))^2 \det(B) (\det(C))^{-1} = \frac{(4)(3)}{5} = \frac{12}{5}$$