> Math 330-3 Number Systems Fall 2022 Final Exam Feingold SHOW ALL WORK NECESSARY TO JUSTIFY YOUR ANSWERS. $\mathbb{N}^{+}=\mathbb{N} \backslash\{0\}$ and $\mathbb{Q}^{+}=\{r \in \mathbb{Q} \mid r>0\}$
(1) (20 Points) Write the definition for each of the following concepts.
(a) For a rational sequence, $a_{n}, n \in \mathbb{N}^{+}$, the limit $\lim _{n \rightarrow \infty} a_{n}=L$ when
(b) A rational sequence, $a_{n}, n \in \mathbb{N}^{+}$, is Cauchy when
(c) A relation \sim on a set S is an equivalence relation when
(d) For $n \in \mathbb{N}$ let $P(n)$ be an assertion. The Principle of Mathematical Induction says that to prove $P(n)$ is true for all $n \in \mathbb{N}$ we must show that
(2) (20 Points) Prove each of the following statements by induction.
(a) For any $n \in \mathbb{N}$, we have $\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(b) For any $n \in \mathbb{N}$, we have $6 \mid\left(2 n^{3}+3 n^{2}+n\right)$.
(3) (20 Points) Define sets $A=\{n \in \mathbb{Z} \mid \operatorname{gcd}(3, n)=1\}$ and $B=\{n \in \mathbb{Z} \mid \operatorname{gcd}(6, n)=1\}$. For each assertion below prove it if it is true. If it is false, show why.
(a) $A \cap B=B$
(b) $A \cup B=\mathbb{Z}$
(c) $A \cup 3 \mathbb{Z}=\mathbb{Z}$
(d) $B \cup 6 \mathbb{Z}=\mathbb{Z}$
(4) (20 Points) For each of the following formulas, determine whether or not it defines a function, and if so, whether it is injective, surjective, bijective.
(a) $f: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{9}$ by $f\left([a]_{3}\right)=[a]_{9}$ for all $a \in \mathbb{Z}$.
(b) $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=3 x+1$ for all $x \in \mathbb{R}$.
(c) $h: \mathbb{Q} \rightarrow \mathbb{Z}$ by $h\left(\frac{m}{n}\right)=m+n$ for all $\frac{m}{n} \in \mathbb{Q}$.
(5) (30 Points) Answer the following questions about rational sequences.
(a) Use the definition of limit to prove that $a_{n}=\frac{2 n^{2}+3}{3 n^{2}+4}$ has $\lim _{n \rightarrow \infty} a_{n}=\frac{2}{3}$.
(b) Use the definition of Cauchy to prove that $a_{n}=\frac{(-1)^{n}}{n}$ is Cauchy.
(6) (20 Points) We say sets S and T have the same cardinality when $\exists f: S \rightarrow T$ which is bijective. For any set S, the power set $\mathcal{P}(S)=\{A \mid A \subseteq S\}$ is the set of all subsets of S. For $n \in \mathbb{N}^{+}$let $[1, n]=\left\{k \in \mathbb{N}^{+} \mid 1 \leq k \leq n\right\}=\{1, \cdots, n\}$. We say set $S=\left\{s_{1}, \cdots, s_{n}\right\}$ has finite cardinality $|S|=n$ because the function $f:[1, n] \rightarrow S$ with $f(k)=s_{k}$ is bijective. Assume you know that for disjoint finite sets, $C \cap D=\emptyset$, that $|C \cup D|=|C|+|D|$.
Prove by induction on $n \in \mathbb{N}^{+}$that the cardinality $|\mathcal{P}([1, n])|=2^{n}$.
Hint: In the inductive step, for any subset $A \subseteq[1, n+1]$, either $n+1 \notin A$ or $n+1 \in A$.
(7) (20 Points) The Euler phi function is defined by $\phi(n)=|U(n)|$ where $U(n)=\left\{[a]_{n} \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}$. It can be proven that if $\operatorname{gcd}(m, n)=1$ then $\phi(m n)=\phi(m) \phi(n)$. We already know that $\phi(p)=p-1$ for p any prime, but it is also true that $\phi\left(p^{k}\right)=p^{k-1}(p-1)$, so from the Fundamental Theorem of Arithmetic, for any $2 \leq n \in \mathbb{N}$, if $n=\prod_{i=1}^{r} p_{i}^{k_{i}}$ then we get the famous Euler formula

$$
\phi(n)=\prod_{i=1}^{r} \phi\left(p_{i}^{k_{i}}\right)=\prod_{i=1}^{r} p_{i}^{k_{i}-1}\left(p_{i}-1\right)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) .
$$

We have used Euler's theorem, $a^{\phi(n)} \equiv 1(\bmod n)$ when $\operatorname{gcd}(a, n)=1$, to answer questions about the equivalence class of a high power of such an integer, a. Use this information to answer the following questions as efficiently as possible, without explicitly computing high powers.
(a) Find the last two digits of 9^{1002}, that is, find $1 \leq d \leq 99$ such that $9^{1002} \equiv d(\bmod 100)$.
(b) Find the unique c with $1 \leq c<23$ such that $18^{7064} \equiv c(\bmod 23)$.
(1) (20 Points) Write the definition for each of the following concepts.
(a) For a rational sequence, $a_{n}, n \in \mathbb{N}^{+}$, the limit $\lim _{n \rightarrow \infty} a_{n}=L$ when $\forall \epsilon \in \mathbb{Q}^{+}, \exists M_{\epsilon} \in \mathbb{N}^{+}$such that if $n \geq M_{\epsilon}$ then $\left|a_{n}-L\right|<\epsilon$.
(b) A rational sequence, $a_{n}, n \in \mathbb{N}^{+}$, is Cauchy when $\forall \epsilon \in \mathbb{Q}^{+}, \exists M_{\epsilon} \in \mathbb{N}^{+}$such that if $m, n \geq M_{\epsilon}$ then $\left|a_{m}-a_{n}\right|<\epsilon$.
(c) A relation \sim on a set S is an equivalence relation when

It is reflexive: $\forall s \in S, s \sim s$, symmetric: $\forall s_{1}, s_{2} \in S, s_{1} \sim s_{2}$ implies $s_{2} \sim s_{1}$, transitive: $\forall s_{1}, s_{2}, s_{3} \in S, s_{1} \sim s_{2}$ and $s_{2} \sim s_{3}$ implies $s_{1} \sim s_{3}$.
(d) For $n \in \mathbb{N}$ let $P(n)$ be an assertion. The Principle of Mathematical Induction says that to prove $P(n)$ is true for all $n \in \mathbb{N}$ we must show that $P(0)$ is true (base case), and for any $n \in \mathbb{N}$, if $P(n)$ is true then $P(n+1)$ is true (inductive step).
(2) (20 Points) Prove each of the following statements by induction.
(a) For any $n \in \mathbb{N}$, we have $\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$

Solution: For any $n \in \mathbb{N}$ let $P(n)$ be the assertion of the formula. The base case $P(0)$ says $\sum_{k=0}^{0} k^{2}=\frac{0(0+1)(2(0)+1)}{6}$, that is, $0^{2}=\frac{0}{6}$ which is true. For the inductive step, assume that for some $n \in \mathbb{N}, P(n)$ is true, and show that implies $P(n+1)$. Starting with the left hand side of $P(n+1)$, using the inductive definition of summations and the inductive hypothesis, $P(n)$, we have

$$
\begin{gathered}
\sum_{k=0}^{n+1} k^{2}=\sum_{k=0}^{n} k^{2}+(n+1)^{2}=\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}=\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6} \\
\quad=\frac{(n+1)(n(2 n+1)+6(n+1))}{6}=\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6}=\frac{(n+1)(n+2)(2 n+3)}{6}
\end{gathered}
$$

which is the right hand side of $P(n+1)$, completing the proof by induction.
(b) For any $n \in \mathbb{N}$, we have $6 \mid\left(2 n^{3}+3 n^{2}+n\right)$.

Solution: For any $n \in \mathbb{N}$ let $P(n)$ be the assertion that $6 \mid\left(2 n^{3}+3 n^{2}+n\right) . P(0)$ says $6 \mid 0$ which is true. Assuming $P(n)$ for some $n \in \mathbb{N}$, show that implies $P(n+1)$, that is, $6 \mid\left(2(n+1)^{3}+3(n+1)^{2}+(n+1)\right)$. We have by basic algebra,

$$
\begin{aligned}
& 2(n+1)^{3}+3(n+1)^{2}+(n+1)=2\left(n^{3}+3 n^{2}+3 n+1\right)+3\left(n^{2}+2 n+1\right)+(n+1) \\
& =\left(2 n^{3}+3 n^{2}+n\right)+6 n^{2}+6 n+2+6 n+3+1=\left(2 n^{3}+3 n^{2}+n\right)+6\left(n^{2}+2 n+1\right)
\end{aligned}
$$

which is divisible by 6 since both terms are divisible by 6 .
(3) (20 Points) $A=\{n \in \mathbb{Z} \mid \operatorname{gcd}(3, n)=1\}$ and $B=\{n \in \mathbb{Z} \mid \operatorname{gcd}(6, n)=1\}$. For each assertion below prove it if it is true. If it is false, show why.
(a) $A \cap B=B$
(b) $A \cup B=\mathbb{Z}$
(c) $A \cup 3 \mathbb{Z}=\mathbb{Z}$
(d) $B \cup 6 \mathbb{Z}=\mathbb{Z}$
(a) True. $A=\{n \in \mathbb{Z} \mid 3 \nmid n\}=(3 \mathbb{Z}+1) \cup(3 \mathbb{Z}-1)$ and
$B=\{n \in \mathbb{Z} \mid n \equiv \pm 1(\bmod 6)\}=(6 \mathbb{Z}+1) \cup(6 \mathbb{Z}-1)$. So $n \in B$ iff $n=6 m \pm 1=3(2 m) \pm 1$ for some $m \in \mathbb{Z}$ says $n \in A$. Since B is a subset of $A, A \cap B=B$.
(b) False. From part (a), we have $A \cup B=A \neq \mathbb{Z}$. No multiple of 3 is in $A \cup B$.
(c) True. $A \cup 3 \mathbb{Z}=(3 \mathbb{Z}+1) \cup(3 \mathbb{Z}-1) \cup 3 \mathbb{Z}=\mathbb{Z}$ since it is the union of all three equivalence classes mod 3.
(d) False. $B \cup 6 \mathbb{Z}=(6 \mathbb{Z}+1) \cup(6 \mathbb{Z}-1) \cup 6 \mathbb{Z} \neq \mathbb{Z}$ since it is only three of the six equivalence classes $\bmod 6$. In particular, 2,3 and 4 are not in $B \cup 6 \mathbb{Z}$.
(4) (20 Points) For each of the following formulas, determine whether or not it defines a function, and if so, whether it is injective, surjective, bijective.
(a) (5 Pts) $f: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{9}$ by $f\left([a]_{3}\right)=[a]_{9}$ for all $a \in \mathbb{Z}$.

Solution: This is not a function since $[0]_{3}=[3]_{3}$ in \mathbb{Z}_{3} but $f\left([0]_{3}\right)=[0]_{9} \neq[3]_{9}=f\left([3]_{3}\right)$.
(b) $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=3 x+1$ for all $x \in \mathbb{R}$.

Solution: (10 Pts) This is a function since for every $x \in \mathbb{R}, 3 x+1 \in \mathbb{R}$ is defined by the operations of multiplication and addition in \mathbb{R}. g is injective because $g\left(x_{1}\right)=g\left(x_{2}\right)$ means $3 x_{1}+1=3 x_{2}+1$ which implies $3 x_{1}=3 x_{2}$ and after dividing by $3, x_{1}=x_{2} . g$ is surjective because for any $y \in \mathbb{R}$ we can find $x \in \mathbb{R}$ such that $g(x)=y$. To do so, just solve $3 x+1=y$ to get $x=(y-1) / 3 . g$ is bijective since it is both injective and surjective.
(c) (5 Pts) $h: \mathbb{Q} \rightarrow \mathbb{Z}$ by $h\left(\frac{m}{n}\right)=m+n$ for all $\frac{m}{n} \in \mathbb{Q}$.

Solution: This is not a function since $\frac{1}{2}=\frac{2}{4} \in \mathbb{Q}$ but $h\left(\frac{1}{2}\right)=1+2=3 \neq 6=2+4=h\left(\frac{2}{4}\right)$.
(a) Use the definition of limit to prove that $a_{n}=\frac{2 n^{2}+3}{3 n^{2}+4}$ has $\lim _{n \rightarrow \infty} a_{n}=\frac{2}{3}$.

Solution: We need to show that $\forall \epsilon \in \mathbb{Q}^{+}, \exists M_{\epsilon} \in \mathbb{N}^{+}$such that if $n \geq M_{\epsilon}$ then $\left|a_{n}-L\right|<\epsilon$. We know that $\left|\frac{2 n^{2}+3}{3 n^{2}+4}-\frac{2}{3}\right|=\left|\frac{3\left(2 n^{2}+3\right)-2\left(3 n^{2}+4\right)}{3\left(3 n^{2}+4\right)}\right|=\frac{1}{3\left(3 n^{2}+4\right)}<\frac{1}{9 n^{2}}$. Let's find $M_{\epsilon} \in \mathbb{N}^{+}$such that if $n \geq M_{\epsilon}$ then $\frac{1}{9 n^{2}}<\epsilon$ which is true iff $\frac{1}{9 \epsilon}<n^{2}$ iff $\frac{1}{3 \sqrt{\epsilon}}<n$. Using the Archimedean Lemma, for $x=\frac{1}{3 \sqrt{\epsilon}} \in \mathbb{R}$ there is an $N_{x} \in \mathbb{N}^{+}$such that $x<N_{x}$, so for $n \geq M_{\epsilon}=N_{x}$ we have $\frac{1}{3 \sqrt{\epsilon}}<M_{\epsilon} \leq n$ implies $\frac{1}{9 n^{2}}<\epsilon$.
(b) Use the definition of Cauchy to prove that $a_{n}=\frac{(-1)^{n}}{n}$ is Cauchy.

Solution: We need to show that $\forall \epsilon \in \mathbb{Q}^{+}, \exists M_{\epsilon} \in \mathbb{N}^{+}$such that if $m, n \geq M_{\epsilon}$ then $\left|a_{m}-a_{n}\right|<\epsilon$. From the Triangle Inequality we know

$$
\left|\frac{(-1)^{m}}{m}-\frac{(-1)^{n}}{n}\right| \leq\left|\frac{(-1)^{m}}{m}\right|+\left|-\frac{(-1)^{n}}{n}\right|=\frac{1}{m}+\frac{1}{n}
$$

The condition $m \geq M_{\epsilon}$ is equivalent to $\frac{1}{m} \leq \frac{1}{M_{\epsilon}}$ so we want $\frac{1}{M_{\epsilon}}<\frac{\epsilon}{2}$, which is the same as $\frac{2}{\epsilon}<M_{\epsilon}$. Using the Archimedean Lemma, for $x=\frac{2}{\epsilon} \in \mathbb{R}$ there is an $N_{x} \in \mathbb{N}^{+}$such that $\underset{x}{\epsilon}<N_{x}$, so for $m, n \geq M_{\epsilon}=N_{x}$ we have $\frac{2}{\epsilon}<M_{\epsilon} \leq m, n$ implies $\frac{1}{m}+\frac{1}{n}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.
(6) (20 Points) We say sets S and T have the same cardinality when $\exists f: S \rightarrow T$ which is bijective. For any set S, the power set $\mathcal{P}(S)=\{A \mid A \subseteq S\}$ is the set of all subsets of S. For $n \in \mathbb{N}^{+}$let $[1, n]=\left\{k \in \mathbb{N}^{+} \mid 1 \leq k \leq n\right\}=\{1, \cdots, n\}$. We say set $S=\left\{s_{1}, \cdots, s_{n}\right\}$ has finite cardinality $|S|=n$ because the function $f:[1, n] \rightarrow S$ with $f(k)=s_{k}$ is bijective. Assume you know that for disjoint finite sets, $C \cap D=\emptyset$, that $|C \cup D|=|C|+|D|$.

Prove by induction on $n \in \mathbb{N}^{+}$that the cardinality $|\mathcal{P}([1, n])|=2^{n}$.
Solution: For the base case $n=1, \mathcal{P}([1,1])=\{\emptyset,\{1\}\}$ has $2=2^{1}$ elements. For the inductive step suppose $|\mathcal{P}([1, n])|=2^{n}$ and try to prove $|\mathcal{P}([1, n+1])|=2^{n+1}=2^{n} \cdot 2$. Write $\mathcal{P}([1, n+1])=C \cup D$ where $C=\{A \subseteq[1, n+1] \mid n+1 \notin A\}=\{A \subseteq[1, n]\}=\mathcal{P}([1, n])$ and $D=\{A \subseteq[1, n+1] \mid n+1 \in A\}$. These are disjoint subsets of $\mathcal{P}([1, n+1])$ since any subset of $[1, n+1]$ either contains $n+1$ or it doesn't. By the inductive hypothesis, $|C|=|\mathcal{P}([1, n])|=2^{n}$, and we know $|\mathcal{P}([1, n+1])|=|C \cup D|=|C|+|D|=2^{n}+|D|$. So it only remains to show that $|D|=|C|$ because that would say $|\mathcal{P}([1, n+1])|=2^{n}+2^{n}=$ $2^{n} \cdot 2=2^{n+1}$. To get $|D|=|C|$ we just need to find a bijective map $f: C \rightarrow D$. For any $A \in C$ define $f(A)=A \cup\{n+1\} \in D$. This map is surjective by the definitions of C and D. It is injective since $f(A)=f(B)$ means $A \cup\{n+1\}=B \cup\{n+1\}$ so $A=B$ in C.
(7) (20 Points) The Euler phi function is defined by $\phi(n)=|U(n)|$ where $U(n)=\left\{[a]_{n} \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}$. It can be proven that if $\operatorname{gcd}(m, n)=1$ then $\phi(m n)=\phi(m) \phi(n)$. We already know that $\phi(p)=p-1$ for p any prime, but it is also true that $\phi\left(p^{k}\right)=p^{k-1}(p-1)$, so from the Fundamental Theorem of Arithmetic, for any $2 \leq n \in \mathbb{N}$, if $n=\prod_{i=1}^{r} p_{i}^{k_{i}}$ then we get the famous Euler formula

$$
\phi(n)=\prod_{i=1}^{r} \phi\left(p_{i}^{k_{i}}\right)=\prod_{i=1}^{r} p_{i}^{k_{i}-1}\left(p_{i}-1\right)=n \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) .
$$

We have used Euler's theorem, $a^{\phi(n)} \equiv 1(\bmod n)$ when $\operatorname{gcd}(a, n)=1$, to answer questions about the equivalence class of a high power of such an integer, a. Use this information to answer the following questions as efficiently as possible, without explicitly computing high powers.
(a) Find the last two digits of 9^{1002}, that is, find $1 \leq d \leq 99$ such that $9^{1002} \equiv d(\bmod 100)$.
Solution: We know that $\phi(100)=\phi\left(2^{2}\right) \phi\left(5^{2}\right)=2^{1}(2-1) 5^{1}(5-1)=(2)(5)(4)=40$ so from Euler's Theorem, $9^{40} \equiv 1(\bmod 100)$. But $1002=(40)(25)+2$ so

$$
9^{1002}=9^{(40)(25)+2}=\left(9^{40}\right)^{25} 9^{2} \equiv 1^{25} 9^{2} \equiv 81(\bmod 100) \quad \text { gives } \quad d=81
$$

In fact, $9^{10} \equiv 1(\bmod 100)$ gives the same answer but takes too much time to calculate.
(b) Find the unique c with $1 \leq c<23$ such that $18^{7064} \equiv c(\bmod 23)$.

Solution: Since 23 is prime, $\phi(23)=22$ so from Euler's Theorem, or Fermat's Little Theorem, $18^{22} \equiv 1(\bmod 23)$. But $7064=(22)(321)+2$ so

$$
18^{7064}=18^{(22)(321)+2}=\left(18^{22}\right)^{321} 18^{2} \equiv 1^{321} 18^{2} \equiv 324 \equiv(23)(14)+2 \equiv 2(\bmod 23)
$$

gives $c=2$. The last steps could have been done as $18^{2} \equiv(-5)^{2}=25 \equiv 2(\bmod 23)$.

