
Math 330-3 Number Systems Fall 2022 Final Exam Feingold

SHOW ALL WORK NECESSARY TO JUSTIFY YOUR ANSWERS.
N+ = N\{0} and Q+ = {r ∈ Q | r > 0}

(1) (20 Points) Write the definition for each of the following concepts.

(a) For a rational sequence, an, n ∈ N+, the limit lim
n→∞

an = L when

(b) A rational sequence, an, n ∈ N+, is Cauchy when

(c) A relation ∼ on a set S is an equivalence relation when

(d) For n ∈ N let P (n) be an assertion. The Principle of Mathematical Induction
says that to prove P (n) is true for all n ∈ N we must show that

(2) (20 Points) Prove each of the following statements by induction.

(a) For any n ∈ N, we have
n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6
.

(b) For any n ∈ N, we have 6|(2n3 + 3n2 + n).

(3) (20 Points) Define sets A = {n ∈ Z | gcd(3, n) = 1} and B = {n ∈ Z | gcd(6, n) = 1}.
For each assertion below prove it if it is true. If it is false, show why.

(a) A ∩B = B (b) A ∪B = Z (c) A ∪ 3Z = Z (d) B ∪ 6Z = Z

(4) (20 Points) For each of the following formulas, determine whether or not it defines a
function, and if so, whether it is injective, surjective, bijective.

(a) f : Z3 → Z9 by f([a]3) = [a]9 for all a ∈ Z.

(b) g : R→ R by g(x) = 3x+ 1 for all x ∈ R.

(c) h : Q→ Z by h(mn ) = m+ n for all m
n ∈ Q.

(5) (30 Points) Answer the following questions about rational sequences.

(a) Use the definition of limit to prove that an =
2n2 + 3

3n2 + 4
has lim

n→∞
an =

2

3
.

(b) Use the definition of Cauchy to prove that an =
(−1)n

n
is Cauchy.

(6) (20 Points) We say sets S and T have the same cardinality when ∃f : S → T which
is bijective. For any set S, the power set P(S) = {A | A ⊆ S} is the set of all
subsets of S. For n ∈ N+ let [1, n] = {k ∈ N+ | 1 ≤ k ≤ n} = {1, · · · , n}. We say set
S = {s1, · · · , sn} has finite cardinality |S| = n because the function f : [1, n] → S
with f(k) = sk is bijective. Assume you know that for disjoint finite sets, C ∩D = ∅,
that |C ∪D| = |C|+ |D|.
Prove by induction on n ∈ N+ that the cardinality |P([1, n])| = 2n.
Hint: In the inductive step, for any subset A ⊆ [1, n+1], either n+1 /∈ A or n+1 ∈ A.



(7) (20 Points) The Euler phi function is defined by φ(n) = |U(n)| where
U(n) = {[a]n ∈ Zn | gcd(a, n) = 1}. It can be proven that if gcd(m,n) = 1 then
φ(mn) = φ(m)φ(n). We already know that φ(p) = p−1 for p any prime, but it is also
true that φ(pk) = pk−1(p− 1), so from the Fundamental Theorem of Arithmetic, for

any 2 ≤ n ∈ N, if n =
r∏
i=1

pkii then we get the famous Euler formula

φ(n) =
r∏
i=1

φ(pkii ) =
r∏
i=1

pki−1i (pi − 1) = n
r∏
i=1

(
1− 1

pi

)
.

We have used Euler’s theorem, aφ(n) ≡ 1 (mod n) when gcd(a, n) = 1, to answer
questions about the equivalence class of a high power of such an integer, a. Use
this information to answer the following questions as efficiently as possible, without
explicitly computing high powers.

(a) Find the last two digits of 91002, that is, find 1 ≤ d ≤ 99 such that
91002 ≡ d (mod 100).

(b) Find the unique c with 1 ≤ c < 23 such that 187064 ≡ c (mod 23).



Math 330-3 Number Systems Fall 2022 Final Exam Solutions Feingold

(1) (20 Points) Write the definition for each of the following concepts.

(a) For a rational sequence, an, n ∈ N+, the limit lim
n→∞

an = L when

∀ε ∈ Q+, ∃Mε ∈ N+ such that if n ≥Mε then |an − L| < ε.

(b) A rational sequence, an, n ∈ N+, is Cauchy when
∀ε ∈ Q+, ∃Mε ∈ N+ such that if m,n ≥Mε then |am − an| < ε.

(c) A relation ∼ on a set S is an equivalence relation when
It is reflexive: ∀s ∈ S, s ∼ s, symmetric: ∀s1, s2 ∈ S, s1 ∼ s2 implies s2 ∼ s1,
transitive: ∀s1, s2, s3 ∈ S, s1 ∼ s2 and s2 ∼ s3 implies s1 ∼ s3.

(d) For n ∈ N let P (n) be an assertion. The Principle of Mathematical Induction
says that to prove P (n) is true for all n ∈ N we must show that P (0) is true (base
case), and for any n ∈ N, if P (n) is true then P (n+ 1) is true (inductive step).

(2) (20 Points) Prove each of the following statements by induction.

(a) For any n ∈ N, we have
n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6

Solution: For any n ∈ N let P (n) be the assertion of the formula. The base case P (0) says
0∑
k=0

k2 =
0(0 + 1)(2(0) + 1)

6
, that is, 02 = 0

6 which is true. For the inductive step, assume

that for some n ∈ N, P (n) is true, and show that implies P (n + 1). Starting with the
left hand side of P (n+ 1), using the inductive definition of summations and the inductive
hypothesis, P (n), we have

n+1∑
k=0

k2 =
n∑
k=0

k2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 =

n(n+ 1)(2n+ 1) + 6(n+ 1)2

6

=
(n+ 1)(n(2n+ 1) + 6(n+ 1))

6
=

(n+ 1)(2n2 + 7n+ 6)

6
=

(n+ 1)(n+ 2)(2n+ 3)

6

which is the right hand side of P (n+ 1), completing the proof by induction.

(b) For any n ∈ N, we have 6|(2n3 + 3n2 + n).

Solution: For any n ∈ N let P (n) be the assertion that 6|(2n3 + 3n2 + n). P (0) says
6|0 which is true. Assuming P (n) for some n ∈ N, show that implies P (n + 1), that is,
6|(2(n+ 1)3 + 3(n+ 1)2 + (n+ 1)). We have by basic algebra,

2(n+ 1)3 + 3(n+ 1)2 + (n+ 1) = 2(n3 + 3n2 + 3n+ 1) + 3(n2 + 2n+ 1) + (n+ 1)

= (2n3 + 3n2 + n) + 6n2 + 6n+ 2 + 6n+ 3 + 1 = (2n3 + 3n2 + n) + 6(n2 + 2n+ 1)

which is divisible by 6 since both terms are divisible by 6.



(3) (20 Points) A = {n ∈ Z | gcd(3, n) = 1} and B = {n ∈ Z | gcd(6, n) = 1}. For each
assertion below prove it if it is true. If it is false, show why.

(a) A ∩B = B (b) A ∪B = Z (c) A ∪ 3Z = Z (d) B ∪ 6Z = Z

(a) True. A = {n ∈ Z | 36 |n} = (3Z + 1) ∪ (3Z− 1) and
B = {n ∈ Z | n ≡ ±1 (mod 6)} = (6Z+1)∪(6Z−1). So n ∈ B iff n = 6m±1 = 3(2m)±1
for some m ∈ Z says n ∈ A. Since B is a subset of A, A ∩B = B.

(b) False. From part (a), we have A ∪B = A 6= Z. No multiple of 3 is in A ∪B.

(c) True. A∪3Z = (3Z+1)∪ (3Z−1)∪3Z = Z since it is the union of all three equivalence
classes mod 3.

(d) False. B∪6Z = (6Z+1)∪ (6Z−1)∪6Z 6= Z since it is only three of the six equivalence
classes mod 6. In particular, 2, 3 and 4 are not in B ∪ 6Z.

(4) (20 Points) For each of the following formulas, determine whether or not it defines a
function, and if so, whether it is injective, surjective, bijective.

(a) (5 Pts) f : Z3 → Z9 by f([a]3) = [a]9 for all a ∈ Z.

Solution: This is not a function since [0]3 = [3]3 in Z3 but f([0]3) = [0]9 6= [3]9 = f([3]3).

(b) g : R→ R by g(x) = 3x+ 1 for all x ∈ R.

Solution: (10 Pts) This is a function since for every x ∈ R, 3x + 1 ∈ R is defined by
the operations of multiplication and addition in R. g is injective because g(x1) = g(x2)
means 3x1 + 1 = 3x2 + 1 which implies 3x1 = 3x2 and after dividing by 3, x1 = x2. g is
surjective because for any y ∈ R we can find x ∈ R such that g(x) = y. To do so, just
solve 3x+ 1 = y to get x = (y−1)/3. g is bijective since it is both injective and surjective.

(c) (5 Pts) h : Q→ Z by h(mn ) = m+ n for all m
n ∈ Q.

Solution: This is not a function since 1
2 = 2

4 ∈ Q but h( 1
2 ) = 1+2 = 3 6= 6 = 2+4 = h( 2

4 ).



(5) (30 Points) Answer the following questions about rational sequences.

(a) Use the definition of limit to prove that an =
2n2 + 3

3n2 + 4
has lim

n→∞
an =

2

3
.

Solution: We need to show that ∀ε ∈ Q+, ∃Mε ∈ N+ such that if n ≥Mε then |an−L| < ε.

We know that

∣∣∣∣2n2 + 3

3n2 + 4
− 2

3

∣∣∣∣ =

∣∣∣∣3(2n2 + 3)− 2(3n2 + 4)

3(3n2 + 4)

∣∣∣∣ =
1

3(3n2 + 4)
<

1

9n2
. Let’s find

Mε ∈ N+ such that if n ≥ Mε then
1

9n2
< ε which is true iff

1

9ε
< n2 iff

1

3
√
ε
< n. Using

the Archimedean Lemma, for x = 1
3
√
ε
∈ R there is an Nx ∈ N+ such that x < Nx, so for

n ≥Mε = Nx we have 1
3
√
ε
< Mε ≤ n implies 1

9n2 < ε.

(b) Use the definition of Cauchy to prove that an =
(−1)n

n
is Cauchy.

Solution: We need to show that ∀ε ∈ Q+, ∃Mε ∈ N+ such that if m,n ≥ Mε then
|am − an| < ε. From the Triangle Inequality we know∣∣∣∣ (−1)m

m
− (−1)n

n

∣∣∣∣ ≤ ∣∣∣∣ (−1)m

m

∣∣∣∣+

∣∣∣∣− (−1)n

n

∣∣∣∣ =
1

m
+

1

n
.

The condition m ≥Mε is equivalent to 1
m ≤

1
Mε

so we want 1
Mε

< ε
2 , which is the same as

2
ε < Mε. Using the Archimedean Lemma, for x = 2

ε ∈ R there is an Nx ∈ N+ such that
x < Nx, so for m,n ≥Mε = Nx we have 2

ε < Mε ≤ m,n implies 1
m + 1

n <
ε
2 + ε

2 = ε.

(6) (20 Points) We say sets S and T have the same cardinality when ∃f : S → T which
is bijective. For any set S, the power set P(S) = {A | A ⊆ S} is the set of all
subsets of S. For n ∈ N+ let [1, n] = {k ∈ N+ | 1 ≤ k ≤ n} = {1, · · · , n}. We say set
S = {s1, · · · , sn} has finite cardinality |S| = n because the function f : [1, n] → S
with f(k) = sk is bijective. Assume you know that for disjoint finite sets, C ∩D = ∅,
that |C ∪D| = |C|+ |D|.

Prove by induction on n ∈ N+ that the cardinality |P([1, n])| = 2n.

Solution: For the base case n = 1, P([1, 1]) = {∅, {1}} has 2 = 21 elements. For the
inductive step suppose |P([1, n])| = 2n and try to prove |P([1, n + 1])| = 2n+1 = 2n · 2.
Write P([1, n+1]) = C∪D where C = {A ⊆ [1, n+1] | n+1 /∈ A} = {A ⊆ [1, n]} = P([1, n])
and D = {A ⊆ [1, n + 1] | n + 1 ∈ A}. These are disjoint subsets of P([1, n + 1]) since
any subset of [1, n + 1] either contains n + 1 or it doesn’t. By the inductive hypothesis,
|C| = |P([1, n])| = 2n, and we know |P([1, n + 1])| = |C ∪D| = |C| + |D| = 2n + |D|. So
it only remains to show that |D| = |C| because that would say |P([1, n+ 1])| = 2n + 2n =
2n · 2 = 2n+1. To get |D| = |C| we just need to find a bijective map f : C → D. For any
A ∈ C define f(A) = A ∪ {n+ 1} ∈ D. This map is surjective by the definitions of C and
D. It is injective since f(A) = f(B) means A ∪ {n+ 1} = B ∪ {n+ 1} so A = B in C.



(7) (20 Points) The Euler phi function is defined by φ(n) = |U(n)| where
U(n) = {[a]n ∈ Zn | gcd(a, n) = 1}. It can be proven that if gcd(m,n) = 1 then
φ(mn) = φ(m)φ(n). We already know that φ(p) = p−1 for p any prime, but it is also
true that φ(pk) = pk−1(p− 1), so from the Fundamental Theorem of Arithmetic, for

any 2 ≤ n ∈ N, if n =
r∏
i=1

pkii then we get the famous Euler formula

φ(n) =
r∏
i=1

φ(pkii ) =
r∏
i=1

pki−1i (pi − 1) = n
r∏
i=1

(
1− 1

pi

)
.

We have used Euler’s theorem, aφ(n) ≡ 1 (mod n) when gcd(a, n) = 1, to answer
questions about the equivalence class of a high power of such an integer, a. Use
this information to answer the following questions as efficiently as possible, without
explicitly computing high powers.

(a) Find the last two digits of 91002, that is, find 1 ≤ d ≤ 99 such that
91002 ≡ d (mod 100).

Solution: We know that φ(100) = φ(22)φ(52) = 21(2 − 1)51(5 − 1) = (2)(5)(4) = 40 so
from Euler’s Theorem, 940 ≡ 1 (mod 100). But 1002 = (40)(25) + 2 so

91002 = 9(40)(25)+2 = (940)25 92 ≡ 125 92 ≡ 81 (mod 100) gives d = 81.

In fact, 910 ≡ 1 (mod 100) gives the same answer but takes too much time to calculate.

(b) Find the unique c with 1 ≤ c < 23 such that 187064 ≡ c (mod 23).

Solution: Since 23 is prime, φ(23) = 22 so from Euler’s Theorem, or Fermat’s Little
Theorem, 1822 ≡ 1 (mod 23). But 7064 = (22)(321) + 2 so

187064 = 18(22)(321)+2 = (1822)321 182 ≡ 1321 182 ≡ 324 ≡ (23)(14) + 2 ≡ 2 (mod 23)

gives c = 2. The last steps could have been done as 182 ≡ (−5)2 = 25 ≡ 2 (mod 23).


