NAME (Printed):
Math 330-3 Number Systems Fall 2022 Quiz 7 Feingold SHOW ALL WORK NECESSARY TO JUSTIFY YOUR ANSWERS.

$$
\mathbb{N}^{+}=\mathbb{N} \backslash\{0\} \text { and } \mathbb{Q}^{+}=\{r \in \mathbb{Q} \mid r>0\}
$$

Def: We say a sequence of rational numbers $a_{n}, n \in \mathbb{N}^{+}$, is Cauchy when $\forall \epsilon \in \mathbb{Q}^{+}, \exists M_{\epsilon} \in \mathbb{N}^{+}$such that if $m, n \geq M_{\epsilon}$ then $\left|a_{m}-a_{n}\right|<\epsilon$.
Lemma: $\forall x \in \mathbb{R}, \exists N_{x} \in \mathbb{N}^{+}$such that $x<N_{x}$.
Theorem (Triangle Inequality in \mathbb{Q}) For any $a, b \in \mathbb{Q}$ we have $|a+b| \leq|a|+|b|$.
(15 points) Using the above definition of Cauchy sequence, the lemma and the Triangle Inequality, prove the sequence $a_{n}=\frac{1}{n}$ is Cauchy.

$$
\mathbb{N}^{+}=\mathbb{N} \backslash\{0\} \text { and } \mathbb{Q}^{+}=\{r \in \mathbb{Q} \mid r>0\}
$$

Def: We say a sequence of rational numbers $a_{n}, n \in \mathbb{N}^{+}$, is Cauchy when $\forall \epsilon \in \mathbb{Q}^{+}, \exists M_{\epsilon} \in \mathbb{N}^{+}$such that if $m, n \geq M_{\epsilon}$ then $\left|a_{m}-a_{n}\right|<\epsilon$.
Lemma: $\forall x \in \mathbb{R}, \exists N_{x} \in \mathbb{N}^{+}$such that $x<N_{x}$.
Theorem (Triangle Inequality in \mathbb{Q}) For any $a, b \in \mathbb{Q}$ we have $|a+b| \leq|a|+|b|$.
(15 points) Using the above definition of Cauchy sequence, the lemma and the Triangle Inequality, prove the sequence $a_{n}=\frac{1}{n}$ is Cauchy.

Solution: $\forall \epsilon \in \mathbb{Q}^{+}$we need to show that $\exists M_{\epsilon} \in \mathbb{N}^{+}$such that $m, n \geq M_{\epsilon}$ implies $\left|\frac{1}{m}-\frac{1}{n}\right|<\epsilon$. By the Triangle Inequality we know that

$$
\left|\frac{1}{m}-\frac{1}{n}\right| \leq\left|\frac{1}{m}\right|+\left|-\frac{1}{n}\right|=\frac{1}{m}+\frac{1}{n} .
$$

If we choose M_{ϵ} so that $m, n \geq M_{\epsilon}$ implies $\frac{1}{m}<\frac{\epsilon}{2}$ and $\frac{1}{n}<\frac{\epsilon}{2}$, then we will get

$$
\left|\frac{1}{m}-\frac{1}{n}\right| \leq \frac{1}{m}+\frac{1}{n}<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

The condition $\frac{1}{m}<\frac{\epsilon}{2}$ is equivalent to $\frac{2}{\epsilon}<m$ and $\frac{1}{n}<\frac{\epsilon}{2}$ is equivalent to $\frac{2}{\epsilon}<n$. Using the lemma with $x=\frac{2}{\epsilon}$, there is some $N_{x} \in \mathbb{N}^{+}$such that $\frac{2}{\epsilon}<N_{x}$, so if $m, n \geq M_{\epsilon}=N_{x}$ we have $\frac{2}{\epsilon}<M_{x} \leq m, n$ as required.

