Math 404 Advanced Linear Algebra Spring 2025 Exam 2 Feingold SHOW WORK IN ORDER TO GET CREDIT FOR YOUR ANSWERS

- (1) (20 points, 4 points each) Answer each of the following questions separately.
- (a) Let $L: V \to V$ be **invertible**, let $\theta \neq v \in V$ be an eigenvector for L with eigenvalue $\lambda \in \mathbb{F}$. Show that $\lambda \neq 0$ and that v is an eigenvector for L^{-1} with eigenvalue λ^{-1} .
- (b) Let $A, B, C \in \mathbb{R}^n_n$ with det(A) = 3, det(B) = -5 and det(C) = 2. What is the value of $det(A^TB^{-1}C^3)$? (A^T means A transpose. Simplify your answer.)
- (c) If $A \in \mathbb{F}_n^n$ and the homogeneous linear system $[A|0_1^n]$ has only the **trivial solution**, then what is the **most** you can say about det(A)?
- (d) Let $L: V \to V$ have r distinct eigenvalues $\lambda_1, \dots, \lambda_r$, with corresponding algebraic multiplicities k_i and geometric multiplicities g_i for $1 \le i \le r$. What relationship between k_i and g_i is always true?
- (e) Let U and W be subspaces of V with $\dim(V) = 12$, $\dim(U) = 9$ and $\dim(W) = 7$. Find all **possible** values of $\dim(U \cap W)$.

		Γ18	-20	-20	-20 J	
(2)	(15 Points) For $A =$	5	-7	-5	-5	find the abarrateristic polynomial
		5	-5	-7	-5	ind the characteristic polynomial,
		$\lfloor 5$	-5	-5	-7	
	$Char_A(t) = \det(A -$	tI_4),	all eig	enval	ues of	A and their algebraic multiplicities.

(3) (15 points) The matrix
$$A = \begin{bmatrix} 4 & 1 & 0 & 1 \\ 0 & 4 & 0 & 1 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$
 has characteristic polynomial

 $Char_A(t) = (t-4)^3(t-5)$ so its eigenvalues are $\lambda_1 = 4$ with algebraic multiplicity $k_1 = 3$, and $\lambda_2 = 5$ with algebraic multiplicity $k_2 = 1$.

- (a) Can A can be diagonalized? If not, give reasons why. If it can, find an invertible matrix P and a diagonal matrix D such that $D = P^{-1}AP$.
- (b) Find the minimal polynomial $m_A(t)$ and justify your answer.
- (4) (15 Points) Suppose that $A \in \mathbb{R}_7^7$ has **characteristic** and **minimal** polynomials $Char_A(t) = (t-5)^7$ and $m_A(t) = (t-5)^4$. Find all possible **Jordan canonical form** matrices J to which A might be similar, but not to each other, and **for each one** give the geometric multiplicity of the eigenvalue $\lambda_1 = 5$. Use the notation $J(\lambda, n)$ for a basic Jordan block of size $n \times n$ with λ on the diagonal.

(5) (20 Points) Answer each of the following questions separately.

(a) (5 Points) Find det
$$\begin{bmatrix} 1 & 1 & -1 & -1 \\ 2 & 3 & 4 & 1 \\ 3 & 2 & 1 & 1 \\ 4 & 4 & -2 & -3 \end{bmatrix}$$

- (b) (5 Points)Let $A = [a_{ij}] \in \mathbb{R}^7_7$ where $a_{ij} = i j$. Find det(A).
- (c) (5 Points) Suppose dim(V) = n, $L: V \to V$ has r distinct eigenvalues $\lambda_1, \dots, \lambda_r$, and for $1 \leq i \leq r$ let $T_i = \{v_{ij} \mid 1 \leq j \leq g_i\}$ be a **basis** of the λ_i eigenspace, L_{λ_i} . What relation between n and the geometric multiplicities g_i means that L is diagonalizable?
- (d) (5 Points) Let $V = \mathbb{F}_n^n$, let $U = \{A \in V \mid A^T = A\}$ be the subspace of symmetric matrices, and let $W = \{A \in V \mid A^T = -A\}$ be the subspace of anti-symmetric matrices. Prove that V = U + W and that the sum is a **direct sum**.

	٢0	12	1	0-	1
(6) (15 Doints) Let $I \cdot \mathbb{D}^4 \to \mathbb{D}^4$ by $I(Y) = AY$ for $A =$	0	-4	0	1	
(0) (15 Points) Let $L : \mathbb{R} \to \mathbb{R}$ be $L(\Lambda) = A\Lambda$ for $\Lambda =$	0	-9	0	0	•
	$\lfloor 1$	2	0	0_	

Let $S = \{e_1, e_2, e_3, e_4\}$ be the standard basis of \mathbb{R}^4 and let $T = \{v_1 = e_1, v_2 = L(e_1), v_3 = L^2(e_1), v_4 = L^3(e_1)\}.$

- (a) (5 pts) Find T and show it is independent, so it is a basis of \mathbb{R}^4 .
- (b) (4 pts) Find $L(v_4) = L^4(e_1)$ and write it as a linear combination of the basis vectors in T.
- (c) (3 pts) Using the answers to parts (a) and (b) find the **companion matrix** $C = {}_{T}[L]_{T}$ that represents L with respect to T.
- (d) (3 pts) Using your answer to part (c) give the **characteristic polynomial**, $Char_L(t)$, and the **minimal polynomial**, $m_L(t)$.

Math 404 Advanced Linear Algebra Spring 2025 Exam 2 Solutions Feingold

- (1) (20 points, 4 points each) (1)
- (a) If $\lambda = 0$ then $L(v) = \lambda v = \theta$ would mean $v \in Ker(L)$ is nontrivial, so L would not be injective, contradicting that L is invertible. From $L(v) = \lambda v$ we get $v = L^{-1}(L(v)) = L^{-1}(\lambda v) = \lambda L^{-1}(v)$ so $\lambda^{-1}v = L^{-1}(v)$ which makes v an eigenvector for L^{-1} with eigenvalue λ^{-1} .

(b)
$$det(A^T B^{-1} C^3) = \frac{det(A)det(C)^3}{det(B)} = \frac{(3)(2^3)}{-5} = \frac{24}{-5}.$$

- (c) If $[A|0_1^n]$ has only the trivial solution then A row reduces to the identity matrix, so A is invertible, so det $(A) \neq 0$.
- (d) The relationship $g_i \leq k_i$ for $1 \leq i \leq r$ is always true.
- (e) Since dim(V) = 12, dim(U) = 9 and dim(W) = 7, and dim $(U + W) = \dim(U) + \dim(W) - \dim(U \cap W) = 9 + 7 - \dim(U \cap W)$, and dim $(U + W) \le \dim(V) = 12$, we have $16 - \dim(U \cap W) \le \dim(V) = 12$ so $4 \le \dim(U \cap W)$. Also, dim $(U \cap W) \le Min(\dim(U), \dim(W) = 7$, so $4 \le \dim(U \cap W) \le 7$.

(2) (15 points) The characteristic polynomial is $Char_A(t) = \det(tI_4 - A) = \det(A - tI_4) =$

$$\det \begin{bmatrix} 18-t & -20 & -20 & -20 \\ 5 & -7-t & -5 & -5 \\ 5 & -5 & -7-t & -5 \\ 5 & -5 & -5 & -7-t \end{bmatrix} = \det \begin{bmatrix} -t-2 & 0 & 0 & 4t+8 \\ 0 & -t-2 & 0 & t+2 \\ 0 & 0 & -t-2 & t+2 \\ 5 & -5 & -5 & -7-t \end{bmatrix}$$
$$= (t+2)^3 \det \begin{bmatrix} -1 & 0 & 0 & 4 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ 5 & -5 & -5 & -7-t \end{bmatrix} = (t+2)^3 \det \begin{bmatrix} -1 & 0 & 0 & 4 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & -5 & -5 & -t+13 \end{bmatrix}$$
$$= (t+2)^3 \det \begin{bmatrix} -1 & 0 & 0 & 4 \\ 0 & -1 & 0 & 1 \\ 0 & -5 & -5 & -t+13 \end{bmatrix}$$
$$= (t+2)^3 \det \begin{bmatrix} -1 & 0 & 0 & 4 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -5 & -t+8 \end{bmatrix} = (t+2)^3 \det \begin{bmatrix} -1 & 0 & 0 & 4 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -t+3 \end{bmatrix}$$
$$= (t+2)^3 (t-3).$$

So the eigenvalues are $\lambda_1 = -2$ with algebraic multiplicity $k_1 = 3$ and $\lambda_2 = 3$ with algebraic multiplicity $k_2 = 1$.

(3) (15 points) The matrix $A = \begin{bmatrix} 4 & 1 & 0 & 1 \\ 0 & 4 & 0 & 1 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}$ has **characteristic polynomial** *Char* $A(t) = (t-4)^3(t-5)$ so its eigenvalues are $\lambda_1 = 4$ with algebraic mult

 $Char_A(t) = (t-4)^3(t-5)$ so its eigenvalues are $\lambda_1 = 4$ with algebraic multiplicity $k_1 = 3$, and $\lambda_2 = 5$ with algebraic multiplicity $k_2 = 1$. (a) Can A can be diagonalized? (b) Find the **minimal polynomial** $m_A(t)$ and **justify your answer**.

Solution: (a) Check the $\lambda_1 = 4$ eigenspace A_{λ_1} first since the power of t - 4 in $Char_A(t)$ is $k_1 = 3$. Solve the homogeneous linear system whose coefficient matrix is obtained by plugging in t = 4 to $A - tI_4$. Row reduce

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
to
$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
so
$$\begin{bmatrix} x_1 = r \in \mathbb{R} \\ x_2 = 0 \\ x_3 = s \in \mathbb{R} \\ x_4 = 0 \end{bmatrix}$$
so
$$g_1 = \dim(A_{\lambda_1}) = 2 < 3 = k_1$$
means A is **not diagonalizable**.

(4) (15 Points) Suppose that $A \in \mathbb{R}^7_7$ has characteristic and minimal polynomials $Char_A(t) = (t-5)^7$ and $m_A(t) = (t-5)^4$. Find all possible Jordan canonical form matrices J to which A might be similar, but not to each other, and for each one give the geometric multiplicity of the eigenvalue $\lambda_1 = 5$.

SOLUTION: $Char_A(t) = (t-5)^7$ and $m_A(t) = (t-5)^4$ so there is only one eigenvalue, $\lambda_1 = 5$ with algebraic multiplicity $k_1 = 7$. The power in the minimal polynomial $m_1 = 4$ is the size of the largest Jordan block. Let

$$B = J(5,4) = \begin{bmatrix} 5 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix}, C = J(5,3) = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{bmatrix} \text{ and } D = J(5,2) = \begin{bmatrix} 5 & 1 \\ 0 & 5 \end{bmatrix}.$$

Then there are 3 possible Jordan canonical form matrices similar to A, corresponding to the partitions of 7 into parts with largest part 4:

$$\begin{array}{cccc} Partition: & 4+3 & 4+2+1 & 4+1+1+1 \\ Jordan \ Form: & Diag(B,C) & Diag(B,D,5) & Diag(B,5,5,5) \\ Geom. \ Mult. \ (number \ of \ J-blocks): & 2 & 3 & 4 \end{array}$$

(5) (20 Points) Answer each of the following questions separately.

(a) (5 Points)

$$\det \begin{bmatrix} 1 & 1 & -1 & -1 \\ 2 & 3 & 4 & 1 \\ 3 & 2 & 1 & 1 \\ 4 & 4 & -2 & -3 \end{bmatrix} = \det \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 6 & 3 \\ 0 & -1 & 4 & 4 \\ 0 & 0 & 2 & 1 \end{bmatrix} = \det \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 6 & 3 \\ 0 & 0 & 10 & 7 \\ 0 & 0 & 2 & 1 \end{bmatrix}$$
$$= \det \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 6 & 3 \\ 0 & 0 & 2 & 1 \end{bmatrix} = -\det \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 6 & 3 \\ 0 & 0 & 2 & 1 \end{bmatrix} = -4$$

- (b) (5 Points) Since $A = [a_{ij}] \in \mathbb{R}^7_7$ where $a_{ij} = i j$, we see that $a_{ji} = j i = -a_{ij}$ so $A^T = -A$ is skew-symmetric. Then $\det(A) = \det(A^T) = \det(-A) = (-1)^7 \det(A) = -\det(A)$, so $2 \det(A) = 0$ so $\det(A) = 0$.
- (c) (5 Points) Suppose dim(V) = n, $L: V \to V$ has r distinct eigenvalues $\lambda_1, \dots, \lambda_r$, and for $1 \leq i \leq r$ let $T_i = \{v_{ij} \mid 1 \leq j \leq g_i\}$ be a **basis** of the λ_i eigenspace, L_{λ_i} . What relation between n and the **geometric multiplicities** g_i means that L is diagonalizable?

Solution: *L* is diagonalizable when $g_1 + \cdots + g_r = n$.

(d) (5 Points) Let $V = \mathbb{F}_n^n$, let $U = \{A \in V \mid A^T = A\}$ be the subspace of symmetric matrices, and let $W = \{A \in V \mid A^T = -A\}$ be the subspace of anti-symmetric matrices. Prove that V = U + W and that the sum is a **direct sum**.

Solution: For any $A \in V$ let $A_{sym} = (A + A^T)/2$ and let $A_{anti} = (A - A^T)/2$. Then $A_{sym}^T = A_{sym}$ and $A_{anti}^T = -A_{anti}$ so $A_{sym} \in U$ and $A_{anti} \in W$. So $A = A_{sym} + A_{anti} \in U + W$ proves that V = U + W. The sum is direct because if $A \in U \cap W$ then $A = A^T = -A$ implies $A = 0_n^n$. (6) (15 Points) Let $L : \mathbb{R}^4 \to \mathbb{R}^4$ be L(X) = AX for $A = \begin{bmatrix} 0 & 12 & 1 & 0 \\ 0 & -4 & 0 & 1 \\ 0 & -9 & 0 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}$.

Let
$$S = \{e_1, e_2, e_3, e_4\}$$
 be the standard basis of \mathbb{R}^4 and let $T = \{v_1 = e_1, v_2 = L(e_1), v_3 = L^2(e_1), v_4 = L^3(e_1)\}.$

(a) (5 pts) Find T and show it is independent, so it is a basis of \mathbb{R}^4 .

Solution:
$$T = \left\{ v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, v_4 = \begin{bmatrix} 12 \\ -4 \\ -9 \\ 2 \end{bmatrix} \right\}$$
. To show it is inde-

pendent, show $x_1v_1 + x_2v_2 + x_3v_3 + x_4v_4 = \theta$ has only the trivial solution. We row reduce

- $\begin{bmatrix} 1 & 0 & 0 & 12 & | & 0 \\ 0 & 0 & 1 & -4 & | & 0 \\ 0 & 0 & 0 & -9 & | & 0 \\ 0 & 1 & 0 & 2 & | & 0 \end{bmatrix}$ to $\begin{bmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & | & 0 \end{bmatrix}$ so $\begin{aligned} x_1 &= 0 \\ x_2 &= 0 \\ x_3 &= 0 \\ x_4 &= 0 \end{aligned}$
- (b) (4 pts) Find $L(v_4) = L^4(e_1)$ and write it as a linear combination of the basis vectors in T.

Solution:
$$L(v_4) = L^4(e_1) = \begin{bmatrix} -57\\18\\36\\4 \end{bmatrix}$$
. To solve $\sum_{i=1}^4 x_i v_i = L(v_4)$ row reduce
 $\begin{bmatrix} 1 & 0 & 0 & 12\\0 & 1 & -4\\0 & 1 & 0 & 2 \end{bmatrix} \begin{vmatrix} -57\\0 & 1 & -4\\36\\0 & 1 & 0 & 2 \end{vmatrix}$ to $\begin{bmatrix} 1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\2\\0 & 0 & 0 & 1 \end{vmatrix} = \begin{bmatrix} x_1 = -9\\x_2 = 12\\x_3 = 2\\x_4 = -4 \end{bmatrix}$
This means $L(v_4) = -9v_1 + 12v_2 + 2v_3 - 4v_4$.

(c) (3 pts) Using the answers to parts (a) and (b) find the **companion matrix** $C = {}_{T}[L]_{T}$ that represents L with respect to T.

Solution: From the answers to parts (a) and (b), the **companion matrix** that represents L from T to T is

	Γ0	0	0	-9 J	
C = -[I] = -	1	0	0	12	
C - T[L]T -	0	1	0	2	
	L0	0	1	-4	

(d) (3 pts) Using your answer to part (c) give the **characteristic polynomial**, $Char_L(t)$, and the **minimal polynomial**, $m_L(t)$.

Solution: From the answer to part (c) the characteristic polynomial equals the minimal polynomial,

$$Char_L(t) = m_L(t) = t^4 + 4t^3 - 2t^2 - 12t + 9.$$