NAME (Printed):

Math 404 Advanced Linear Algebra Spring 2025 Quiz 2 Feingold INSTRUCTIONS: For each problem fill in the blank or circle your choice of the most accurate answer. For all problems, let $A \in \mathbb{F}_n^m$ be an $m \times n$ matrix of numbers from field \mathbb{F} , let $\mathbf{0} \in \mathbb{F}^m$ be the $m \times 1$ zero matrix, and let $L_A : \mathbb{F}^n \to \mathbb{F}^m$ be the function associated with A defined as $L_A(X) = AX$. Each answer is worth one point.

- (1) If A row reduces to matrix C in RREF with r non-zero rows, then the homogeneous linear system $AX = \mathbf{0}$ has exactly ______ free variables in its solution.
- (2) If the linear system $AX = \mathbf{0}$ has a non-trivial solution, then rank(A) _____.
- (3) If rank(A) = m then as a function L_A is (circle correct answer) incomprehensible inflamable <u>invertible</u> injective surjective bijective.
- (4) In general, for $A \in \mathbb{F}_n^m$, we only know that $rank(A) \leq$ _____.
- (5) If m < n then as a function $L_A : \mathbb{F}^n \to \mathbb{F}^m$ cannot be (circle correct answer) defined injective surjective

Math 404 Advanced Linear Algebra Spring 2025 Quiz 2 Solutions Feingold INSTRUCTIONS: For each problem fill in the blank or circle your choice of the most accurate answer. For all problems, let $A \in \mathbb{F}_n^m$ be an $m \times n$ matrix of numbers from field \mathbb{F} , let $\mathbf{0} \in \mathbb{F}^m$ be the $m \times 1$ zero matrix, and let $L_A : \mathbb{F}^n \to \mathbb{F}^m$ be the function associated with A defined as $L_A(X) = AX$. Each answer is worth one point.

- (1) If A row reduces to matrix C in RREF with r non-zero rows, then the homogeneous linear system $AX = \mathbf{0}$ has exactly n r free variables in its solution.
- (2) If the linear system $AX = \mathbf{0}$ has a non-trivial solution, then $rank(A) \leq n$.
- (3) If rank(A) = m then then as a function L_A is surjective.
- (4) In general, for $A \in \mathbb{F}_n^m$, we only know that $rank(A) \leq Min(m, n)$.
- (5) If m < n then then as a function L_A cannot be *injective* since $rank(A) = r \le m < n$ so there are n r > 0 free variables in the solutions to $AX = \mathbf{0}$.