NAME (Printed): _____

Math 404Advanced Linear AlgebraSpring 2025Quiz 8FeingoldShow all calculations and reasons needed to justify your answers.

Let $V=\mathbf{R}^5$ with the standard dot product. Let $W=\langle T\rangle$ where

$$T = \left\{ w_1 = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, w_2 = \begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix}, w_3 = \begin{bmatrix} -1\\-1\\0\\0\\1 \end{bmatrix} \right\}$$
is an ordered basis of W .

(1) (5 Pts) Use the Gram-Schmidt process to convert T into an **orthogonal** basis $T' = \{w'_1 = w_1, w'_2, w'_3\}$ for W. Rescale w'_3 to avoid fractions in your final answer.

Math 404Advanced Linear Algebra Spring 2025 Quiz 8 Solutions Feingold

Show all calculations and reasons needed to justify your answers.

Let $V = \mathbf{R}^5$ with the standard dot product. Let $W = \langle T \rangle$ where

$$T = \left\{ w_1 = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, w_2 = \begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix}, w_3 = \begin{bmatrix} -1\\-1\\0\\0\\1 \end{bmatrix} \right\} \text{ is an ordered basis of } W.$$

(1) (5 Pts) Use the Gram-Schmidt process to convert T into an **orthogonal** basis $T' = \{w'_1 = w_1, w'_2, w'_3\}$ for W. Rescale w'_3 to avoid fractions in your final answer.

Solution: Step 1: $w'_1 = w_1$.

Step 2:
$$w'_2 = w_2 - \left(\frac{w_2 \cdot w'_1}{w'_1 \cdot w'_1}\right) w'_1 = \begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix} - \frac{15}{5} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix} - \begin{bmatrix} 3\\3\\3\\4\\5 \end{bmatrix} = \begin{bmatrix} -2\\-1\\0\\1\\2 \end{bmatrix}.$$

Step 3:
$$w'_3 = w_3 - \left(\frac{w_3 \cdot w'_1}{w'_1 \cdot w'_1}\right) w'_1 - \left(\frac{w_3 \cdot w'_2}{w'_2 \cdot w'_2}\right) w'_2 = \begin{bmatrix} -1\\ -1\\ 0\\ 0\\ 1 \end{bmatrix} - \frac{-1}{5} \begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix} - \frac{5}{10} \begin{bmatrix} -2\\ -1\\ 0\\ 1\\ 2 \end{bmatrix}$$

$$= \frac{1}{10} \left(\begin{bmatrix} -10\\ -10\\ 0\\ 0\\ 10 \end{bmatrix} + \begin{bmatrix} 2\\ 2\\ 2\\ 2\\ 2\\ 2 \end{bmatrix} + \begin{bmatrix} 10\\ 5\\ 0\\ -5\\ -10 \end{bmatrix} \right) = \frac{1}{10} \begin{bmatrix} 2\\ -3\\ 2\\ -3\\ 2 \end{bmatrix}.$$
So, rescaling w'_3 to avoid fractions, $T' = \left\{ w'_1 = \begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}, w'_2 = \begin{bmatrix} -2\\ -1\\ 0\\ 1\\ 2\\ 2 \end{bmatrix}, w'_3 = \begin{bmatrix} 2\\ -3\\ 2\\ -3\\ 2\\ -3\\ 2 \end{bmatrix} \right\}$

By the process, $\langle T' \rangle = \langle T \rangle = W$, and we check that $w'_i \cdot w'_j = 0$ for $1 \le i < j \le 3$:

$$\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} -2\\-1\\0\\1\\2 \end{bmatrix} = 0, \qquad \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} 2\\-3\\2\\-3\\2 \end{bmatrix} = 0, \qquad \begin{bmatrix} -2\\-1\\0\\1\\2 \end{bmatrix} \cdot \begin{bmatrix} 2\\-3\\2\\-3\\2 \end{bmatrix} = 0.$$