

Show work to justify your answers. A^T denotes the transpose of matrix A .

(1) (15 Points) Let $L : \mathbb{F}_2^2 \rightarrow \mathbb{F}_2^2$ be the linear transformation given by

$$L \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} (a-b-c) & (a-c+d) \\ (b+c-d) & (2a-c) \end{bmatrix}$$

- (a) (2 points) Find the set of **all vectors** in $\text{Ker}(L)$.
- (b) (2 points) Find a **basis** for $\text{Ker}(L)$ and find $\dim(\text{Ker}(L))$.
- (c) (1 points) Is L injective? **Explain why!**
- (d) (3 points) Find **all vectors** in $\text{Range}(L)$.
- (e) (3 points) Find a **basis** for $\text{Range}(L)$ and find $\dim(\text{Range}(L))$.
- (f) (2 points) Is L onto? **Explain why!**
- (g) (2 points) Is L invertible? **Explain why!** If so, find a formula for L^{-1} .

(2) (20 Points, 4 pts each) Answer each question separately **with a brief justification**.

- (a) Let $L : V \rightarrow W$ and let $S = \{v_1, \dots, v_n\}$ be a basis for V . If L is **injective**, what is the **most** you can say about the set of vectors $L(S) = \{L(v_1), \dots, L(v_n)\}$?
- (b) If $L : \mathbb{F}_4^3 \rightarrow \mathbb{F}^7$, find the best bounds $a \leq \dim(\text{Ker}(L)) \leq b$.
- (c) If $L : \mathbb{F}^3 \rightarrow \mathbb{F}^7$, find the best bounds $c \leq \dim(\text{Range}(L)) \leq d$.
- (d) Let $L : V \rightarrow V$ where $V = W_1 \oplus W_2$ for L -invariant subspaces, W_1 and W_2 , and let L_1 and L_2 be the restrictions of L to these two subspaces. What is the relationship between the $\text{char}_L(t)$, $\text{char}_{L_1}(t)$ and $\text{char}_{L_2}(t)$?
- (e) Continuing (d), what is the relationship between the minimal polynomials $m_L(t)$, $m_{L_1}(t)$ and $m_{L_2}(t)$?

(3) (20 Points, 4 pts each) Answer each question separately with a brief justification. V is a vector space over a field \mathbb{F} .

- (a) If $S = \{v_1, \dots, v_n\} \subseteq V$ is **independent** and $v_{n+1} \in \langle S \rangle$, and $T = \{v_1, \dots, v_n, v_{n+1}\}$, what is the **most** you can say about $\dim(\langle T \rangle)$?
- (b) If $S = \{v_1, \dots, v_m\} \subseteq V$ and $v_{m+1} \in V$ but $v_{m+1} \notin \langle S \rangle$ then what is the **most** you can say about $\dim(\langle S \cup \{v_{m+1}\} \rangle)$?
- (c) Let $A \in \mathbb{F}_n^m$ with $\text{rank}(A) = r$. What is the **most** you can say about $\dim(\text{Ker}(L_A))$?
- (d) If $A \in \mathbb{F}_n^n$ has $\text{rank}(A) = n$, what is the **most** you can say about $L_A : \mathbb{F}^n \rightarrow \mathbb{F}^n$?
- (e) If $S = \{v_1, v_2, \dots, v_n\}$ is a basis of V , what is the **most** you can say about the set $\{[v_1]_S, [v_2]_S, \dots, [v_n]_S\}$ of coordinates of vectors in S with respect to S ?

(4) (15 Pts) Let $V = \mathbb{R}^4$ with the standard dot product, and let $W = S^\perp$, the orthogonal complement in V of $S = \{u_1 = [1 \ 2 \ 1 \ 3]^T, u_2 = [2 \ 3 \ 1 \ 1]^T\}$.

Let $T = \{w_1, w_2\}$ be the basis for W obtained by solving $u_i \cdot X = 0$ for $0 \leq i \leq 2$.

- (a) (10 pts) Use Gram-Schmidt to get an **orthogonal** basis $T' = \{w'_1, w'_2\}$ for W .
- (b) (5 pts) Use T' to find the coefficients x_i of the projection $\text{Proj}_W(v) = x_1w'_1 + x_2w'_2$ of the general vector $v = [a \ b \ c \ d]^T \in V$ into W .

(5) (15 Points) For the real matrix $A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ do the following.

- (a) Find the **characteristic polynomial** $\text{char}_A(t)$, the **eigenvalues** of A , and their **algebraic multiplicities**.
- (b) Find the **minimal polynomial** $m_A(t)$. What does it tell you?
- (c) Find the eigenspaces of A , their bases and geometric multiplicities.
- (d) If A can be diagonalized, find diagonal matrix D and transition matrix P such that $D = P^{-1}AP$. Otherwise, find the **Jordan Canonical Form** matrix J similar to A .

(6) (15 Points) Suppose that $A \in \mathbb{R}^{12}$ has **characteristic** and **minimal** polynomials

$$\text{char}_A(t) = (t - 5)^7(t - 8)^5 \quad \text{and} \quad m_A(t) = (t - 5)^4(t - 8)^3.$$

Find all possible **Jordan canonical form** matrices J to which A might be similar, but not to each other, and for each one give the pair of geometric multiplicities (g_1, g_2) .

(7) (15 Points) Suppose that $A \in \mathbb{R}^{10}$ has **characteristic** and **minimal** polynomials

$$\text{char}_A(t) = (t^2 + 2t + 3)^5 \quad \text{and} \quad m_A(t) = (t^2 + 2t + 3)^2.$$

Find all possible **Rational Canonical Form** matrices R to which A might be similar, but not to each other. In each case, how many **cyclic subspaces** occur in the corresponding decomposition of \mathbb{R}^{10} ?

(8) (15 Pts) Let $L : \mathbb{R}_2^2 \rightarrow \mathbb{R}^2$ be the linear map $L \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a + b + d \\ 3a + 2b - c \end{bmatrix}$ and let S and T be the standard bases of \mathbb{R}_2^2 and \mathbb{R}^2 , respectively. Let other ordered bases be $S' = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ and $T' = \left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$.

- (a) (2 pts) Find the matrix $T[L]_S$ representing L from S to T .
- (b) (3 pts) Find a basis for $\text{Ker}(L)$.
- (c) (4 pts) Find the matrix $T'[L]_{S'}$ representing L from S' to T' directly (without using transition matrices) by row reducing $[T'|L(S')]$.
- (d) (4 pts) Find the transition matrices ${}_S P_{S'}$ and ${}_T Q_T$.
- (e) (2 pts) Compute the product ${}_T Q_T \ T[L]_S \ {}_S P_{S'}$. Compare it to part (c).

(9) (10 Pts) Fix $M \in \mathbb{F}_n^n$ and let $U = \{A \in \mathbb{F}_n^n \mid A^T M = -MA\}$ where A^T is A transpose.

- (a) (5 pts) Prove that U is a subspace of \mathbb{F}_n^n .
- (b) (5 pts) Prove that for any $A, B \in U$ we have $AB - BA \in U$.

(10) (10 Pts) Let V be the real inner product space with basis $S = \{v_1, v_2\}$ and inner product $(v, w) = [v]_S^T M [w]_S$ where $M = [(v_i, v_j)] = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. Let $L : V \rightarrow V$ be a linear map represented by a matrix $A = {}_S [L]_S$ so $A[v]_S = [L(v)]_S$ for all $v \in V$.

- (a) (5 Pts) What condition on A means that L an orthogonal map with respect to this inner product, that is, $(L(v), L(w)) = (v, w)$ for all $v, w \in V$? Justify your answer.
- (b) (5 Pts) Using your answer to part (a), determine whether the map $L(a_1 v_1 + a_2 v_2) = -a_2 v_1 + a_1 v_2$ is orthogonal with respect to (\cdot, \cdot) on V .

(1) (15 points) (a) (2 points) To find all vectors in $\text{Ker}(L)$, row reduce

$$\left[\begin{array}{cccc|c} 1 & -1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 \\ 2 & 0 & -1 & 0 & 0 \end{array} \right] \text{ to } \left[\begin{array}{cccc|c} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right] \text{ so } \begin{array}{l} a = r \\ b = -r \\ c = 2r \\ d = r \in \mathbb{F} \end{array} \text{ so } \left\{ \left[\begin{array}{c} r \\ r \\ 2r \\ r \end{array} \right] \mid r \in \mathbb{F} \right\}.$$

(b) (2 points) $\text{Ker}(L)$ has basis $\left\{ \left[\begin{array}{c} 1 \\ 2 \\ -1 \\ 1 \end{array} \right] \right\}$ and $\dim(\text{Ker}(L)) = 1$.

(c) (1 points) L is not injective since $\text{Ker}(L)$ is non-trivial.

(d) (3 points) All vectors: $\text{Range}(L) = \left\{ \left[\begin{array}{cc} (a-b-c) & (a-c+d) \\ (b+c-d) & (2a-c) \end{array} \right] \in \mathbb{F}_2^2 \mid a, b, c, d \in \mathbb{F} \right\}$.
 Consistency condition: $\left[\begin{array}{cc} w & x \\ y & z \end{array} \right] \in \text{Range}(L)$ iff $0 = w + x + y - z$.

(e) (3 points) $\text{Range}(L)$ is spanned by the set of four vectors

$$\left\{ v_1 = \left[\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array} \right], v_2 = \left[\begin{array}{cc} -1 & 0 \\ 1 & 0 \end{array} \right], v_3 = \left[\begin{array}{cc} -1 & -1 \\ 1 & -1 \end{array} \right], v_4 = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] \right\}$$

and the $\text{Ker}(L)$ being non-trivial means they are dependent. The basis vector of $\text{Ker}(L)$ gives the dependence relation $v_1 - v_2 + 2v_3 + v_4 = \theta$, so $v_4 = -v_1 + v_2 - 2v_3$ is redundant. A basis for $\text{Range}(L)$ is then $\{v_1, v_2, v_3\}$ and $\dim(\text{Range}(L)) = 3$.

(f) (2 points) L is not onto since $\dim(\text{Range}(L)) = 3 < 4 = \dim(\mathbb{F}_2^2)$.

(g) (2 points) L is not invertible since it is not bijective.

(2) (20 Points, 4 pts each) Answer (with brief justification) each question separately.

(a) For $L : V \rightarrow W$ injective and $S = \{v_1, \dots, v_n\}$ a basis for V , we can say that $L(S) = \{L(v_1), \dots, L(v_n)\}$ is a **basis** of $\text{Range}(L)$.

(b) Since $L : \mathbb{F}_4^3 \rightarrow \mathbb{F}_4^7$, we know $12 = \dim(\mathbb{F}_4^3) = \dim(\text{Ker}(L)) + \dim(\text{Range}(L))$. But $0 \leq \dim(\text{Range}(L)) \leq 7$, so $5 \leq \dim(\text{Ker}(L)) \leq 12$.

(c) Since $L : \mathbb{F}^3 \rightarrow \mathbb{F}^7$, we know $3 = \dim(\mathbb{F}^3) = \dim(\text{Ker}(L)) + \dim(\text{Range}(L))$. But $0 \leq \dim(\text{Ker}(L)) \leq 3$, so $0 \leq \dim(\text{Range}(L)) \leq 3$.

(d) $L : V \rightarrow V$ where $V = W_1 \oplus W_2$ for L -invariant subspaces, W_1 and W_2 , and $L_i = L|_{W_i}$. If $B = B_1 \cup B_2$ is a basis of V where B_i is a basis of W_i , then $B[L]_B = \text{diag}(B_1[L_1]_{B_1}, B_2[L_2]_{B_2})$ is block diagonal, so $\text{char}_L(t) = \text{char}_{L_1}(t)\text{char}_{L_2}(t)$ since the characteristic polynomial of a block diagonal matrix is the product of the characteristic polynomials of each block.

(e) Continuing (d), the relationship of the minimal polynomials $m_L(t) = \text{lcm}(m_{L_1}(t), m_{L_2}(t))$.

(3) (20 Points, 4 pts each) Answer (with brief justification) each question separately.

SOLUTIONS:

- If $S = \{v_1, \dots, v_n\} \subseteq V$ is **independent** and $v_{n+1} \in \langle S \rangle$, and $T = \{v_1, \dots, v_n, v_{n+1}\}$, then $\langle S \rangle = \langle T \rangle$ so $\dim(\langle T \rangle) = \dim(\langle S \rangle) = n$.
- If $S = \{v_1, \dots, v_m\} \subseteq V$ and $v_{m+1} \notin \langle S \rangle$ then v_{m+1} is not a redundant vector in $S \cup \{v_{m+1}\}$ so $\dim(\langle S \cup \{v_{m+1}\} \rangle) = \dim(\langle S \rangle) + 1 \leq m + 1$.
- Let $A \in \mathbb{F}_n^m$ with $\text{rank}(A) = r$. You can say $\dim(\text{Ker}(L_A)) = n - r$ since there will be $n - r$ columns without leading ones in the RREF matrix row equivalent to A .
- If $A \in \mathbb{F}_n^n$ has $\text{rank}(A) = n$, then $L_A : \mathbb{F}^n \rightarrow \mathbb{F}^n$ has trivial kernel, so it is **injective**, so it is **surjective**, **bijective**, **invertible** and an **isomorphism**.
- The set of coordinates $\{[v_1]_S, [v_2]_S, \dots, [v_n]_S\}$ is the **standard basis** of \mathbb{F}^n .

- (15 Points) Let $V = \mathbb{R}^4$ with the standard dot product, and let $W = S^\perp$, the orthogonal complement in V of $S = \{u_1 = [1 \ 2 \ 1 \ 3]^T, u_2 = [2 \ 3 \ 1 \ 1]^T\}$.

Let $T = \{w_1, w_2\}$ be the basis for W obtained by solving $u_i \cdot X = 0$ for $0 \leq i \leq 2$.

- (10 pts) Use Gram-Schmidt to get an **orthogonal** basis $T' = \{w'_1, w'_2\}$ for W .

Solution: $W = \{X \in \mathbb{R}^4 \mid X \cdot u_i = 0, i = 1, 2\}$ is found by row reducing

$$\left[\begin{array}{cccc|c} 1 & 2 & 1 & 3 & 0 \\ 2 & 3 & 1 & 1 & 0 \end{array} \right] \text{ to } \left[\begin{array}{cccc|c} 1 & 0 & -1 & -7 & 0 \\ 0 & 1 & 1 & 5 & 0 \end{array} \right] \text{ so } \begin{aligned} x_1 &= r + 7s \\ x_2 &= -r - 5s \\ x_3 &= r \\ x_4 &= s \in \mathbb{R} \end{aligned} \text{ so } T = \left\{ \left[\begin{array}{c} 1 \\ -1 \\ 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 7 \\ -5 \\ 0 \\ 1 \end{array} \right] \right\}$$

Gram-Schmidt gives $w'_1 = w_1$, and

$$w'_2 = w_2 - \frac{w_2 \cdot w'_1}{w'_1 \cdot w'_1} w'_1 = w_2 - \frac{12}{3} w'_1 = \left[\begin{array}{c} 7 \\ -5 \\ 0 \\ 1 \end{array} \right] - 4 \left[\begin{array}{c} 1 \\ -1 \\ 1 \\ 0 \end{array} \right] = \left[\begin{array}{c} 3 \\ -1 \\ -4 \\ 1 \end{array} \right] \text{ so } T' = \left\{ \left[\begin{array}{c} 1 \\ -1 \\ 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 3 \\ -1 \\ -4 \\ 1 \end{array} \right] \right\}.$$

- (5 pts) Use T' to find the coefficients x_i of the projection $\text{Proj}_W(v) = x_1 w'_1 + x_2 w'_2$ of the general vector $v = [a \ b \ c \ d] \in V$ into W .

Solution: Since T' is an orthogonal basis of W , we have

$$x_i = \frac{v \cdot w'_i}{w'_i \cdot w'_i} \text{ so } x_1 = \frac{a - b + c}{3}, \quad x_2 = \frac{3a - b - 4c + d}{27}.$$

(5) (15 Points) (a) (3 pts) The characteristic polynomial $char_A(t)$ is $\det(tI_4 - A) = (t^2 - 1)^2 = (t - 1)^2(t + 1)^2$. The eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = -1$ with algebraic multiplicities $k_1 = 2$ and $k_2 = 2$.

(b) (2 pts) The minimal polynomial is $m_A(t) = (t - 1)(t + 1) = t^2 - 1$ since $A^2 = I_4$. A is diagonalizable because $m_A(t) = (t - 1)(t + 1)$ is a product of distinct linear factors.

(c) Find the eigenspaces of A , their bases and geometric multiplicities.

(3 pts) We find the λ_1 -eigenspace by row reducing $[A - I_4 | 0_1^4] =$

$$\left[\begin{array}{cccc|c} -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 1 & 0 & 0 & -1 & 0 \end{array} \right] \text{ to } \left[\begin{array}{cccc|c} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right] \text{ so } \begin{array}{l} x_1 = s \\ x_2 = r \\ x_3 = r \\ x_4 = s \in \mathbb{R} \end{array}, \text{ so}$$

$$A_{\lambda_1} = \left\{ \begin{bmatrix} s \\ r \\ r \\ s \end{bmatrix} \in \mathbb{R}^4 \mid r, s \in \mathbb{R} \right\} \text{ has basis } \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ so } g_1 = 2.$$

(3 pts) We find the λ_2 -eigenspace by row reducing $[A + I_4 | 0_1^4] =$

$$\left[\begin{array}{cccc|c} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{array} \right] \text{ to } \left[\begin{array}{cccc|c} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right] \text{ so } \begin{array}{l} x_1 = -s \\ x_2 = -r \\ x_3 = r \\ x_4 = s \in \mathbb{R} \end{array}, \text{ so}$$

$$A_{\lambda_2} = \left\{ \begin{bmatrix} -s \\ -r \\ r \\ s \end{bmatrix} \in \mathbb{R}^4 \mid r, s \in \mathbb{R} \right\} \text{ has basis } \left\{ \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ so } g_2 = 2.$$

(d) (4 pts) Eigenbasis $T = \left\{ \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ gives $P = S P_T = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$

transition matrix such that $P^{-1}AP = D = \text{diag}(1, 1, -1, -1)$.

(6) (15 Points) $\text{char}_A(t) = (t - 5)^7(t - 8)^5$ and $m_A(t) = (t - 5)^4(t - 8)^3$ so the two eigenvalues are $\lambda_1 = 5$ and $\lambda_2 = 8$ with $k_1 = 7$ and $k_2 = 5$. The powers in the minimal polynomial $m_1 = 4$ and $m_2 = 3$ tell the sizes of the largest Jordan blocks for each eigenvalue. Let

$$B = J(5, 4) = \begin{bmatrix} 5 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix} \quad C = J(5, 3) = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{bmatrix}, \quad D = J(5, 2) = \begin{bmatrix} 5 & 1 \\ 0 & 5 \end{bmatrix}$$

$$E = J(8, 3) = \begin{bmatrix} 8 & 1 & 0 \\ 0 & 8 & 1 \\ 0 & 0 & 8 \end{bmatrix}, \quad F = J(8, 2) = \begin{bmatrix} 8 & 1 \\ 0 & 8 \end{bmatrix}$$

then there are six possible Jordan canonical form matrices similar to A , corresponding to the three partitions of 7 with largest part 4, $4 + 3 = 4 + 2 + 1 = 4 + 1 + 1 + 1$, and the two partitions of 5 with largest part 3, $3 + 2 = 3 + 1 + 1$:

$$\text{Diag}(B, C, E, F), \quad \text{Diag}(B, D, 5, E, F), \quad \text{Diag}(B, 5, 5, 5, E, F),$$

$$\text{Diag}(B, C, E, 8, 8), \quad \text{Diag}(B, D, 5, E, 8, 8), \quad \text{Diag}(B, 5, 5, 5, E, 8, 8)$$

The corresponding pairs of geometric multiplicities (g_1, g_2) are the numbers of Jordan blocks, $(2, 2)$, $(3, 2)$, $(4, 2)$, $(2, 3)$, $(3, 3)$, $(4, 3)$ respectively.

(7) (15 Points) The **characteristic and minimal polynomials** are $\text{char}_A(t) = (t^2 + 2t + 3)^5$ and $m_A(t) = (t^2 + 2t + 3)^2 = t^4 + 4t^3 + 10t^2 + 12t + 9$. Define the companion matrices (4 pts, 3 pts)

$$C_1 = C((t^2 + 2t + 3)^2) = \begin{bmatrix} 0 & 0 & 0 & -9 \\ 1 & 0 & 0 & -12 \\ 0 & 1 & 0 & -10 \\ 0 & 0 & 1 & -4 \end{bmatrix}, \quad C_2 = C(t^2 + 2t + 3) = \begin{bmatrix} 0 & -3 \\ 1 & -2 \end{bmatrix}.$$

(8 pts) Then there are two possible rational canonical form matrix similar to A , $\text{Diag}(C_1, C_1, C_2)$ and $\text{Diag}(C_1, C_2, C_2, C_2)$. These are the only ways to get the given $\text{char}_A(t)$ as the product of the characteristic polynomials of each companion block, and the given minimal polynomial $m_A(t)$ as the least common multiple of the minimal polynomials of those companion blocks. In each case the number of **cyclic subspaces** occurring in the corresponding decomposition of \mathbb{R}^{10} is the number of companion matrices, 3 in the first case, 4 in the second case.

(8) (15 Pts) Let $L : \mathbb{R}_2^2 \rightarrow \mathbb{R}^2$ be the linear map $L\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a+b+d \\ 3a+2b-c \end{bmatrix}$ and let S and T be the standard bases of \mathbb{R}_2^2 and \mathbb{R}^2 , respectively. Let other ordered bases be $S' = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ and $T' = \left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$.

(a) (2 pts) Find the matrix $T[L]_S$ representing L from S to T .

Solution: The matrix $T[L]_S = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 3 & 2 & -1 & 0 \end{bmatrix}$ by row reducing $[T|L(S)]$.

(b) (3 pts) Find a basis for $\text{Ker}(L)$.

Solution: To find $\text{Ker}(L)$ row reduce $\begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 3 & 2 & -1 & 0 & 0 \end{bmatrix}$ to $\begin{bmatrix} 1 & 0 & -1 & -2 & 0 \\ 0 & 1 & 1 & 3 & 0 \end{bmatrix}$ giving solutions $a = c + 2d$, $b = -c - 3d$ with c and d free variables. Thus, $\text{Ker}(L) = \left\{ \begin{bmatrix} c+2d & -c-3d \\ c & d \end{bmatrix} \in \mathbb{R}_2^2 \mid c, d \in \mathbb{R} \right\}$, which has basis $\left\{ \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix} \right\}$.

(c) (4 pts) Find the matrix $T'[L]_{S'}$ representing L from S' to T' directly (without using transition matrices) by row reducing $[T'|L(S')]$.

Solution: We row reduce $\left[\begin{array}{cc|ccccc} 3 & 2 & 3 & 2 & 2 & 1 \\ 1 & 1 & 4 & 4 & 5 & 3 \\ \hline T' & & L(S') \end{array} \right]$ to $\left[\begin{array}{cc|ccccc} 1 & 0 & -5 & -6 & -8 & -5 \\ 0 & 1 & 9 & 10 & 13 & 8 \\ \hline I_2 & & T'[L]_{S'} \end{array} \right]$ so $T'[L]_{S'} = \begin{bmatrix} -5 & -6 & -8 & -5 \\ 9 & 10 & 13 & 8 \end{bmatrix}$

(d) (4 pts) Find the transition matrices $_S P_{S'}$ and ${}_{T'} Q_T$.

Solution: The transition matrices $_S P_{S'} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ and ${}_{T'} Q_T = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$ since S and T are the standard bases. Then ${}_{T'} Q_T = ({}_{T'} Q_T)^{-1} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$.

(e) (2 pts) Compute the product ${}_{T'} Q_T \ T[L]_S \ {}_S P_{S'}$. Compare it to part (c).

Solution: The matrix product

$$\begin{aligned}
 {}_{T'} Q_T \ T[L]_S \ {}_S P_{S'} &= \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 1 \\ 3 & 2 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \\
 &= \begin{bmatrix} -5 & -3 & 2 & 1 \\ 8 & 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -5 & -6 & -8 & -5 \\ 9 & 10 & 13 & 8 \end{bmatrix} \\
 &= \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 2 & 2 & 1 \\ 4 & 4 & 5 & 3 \end{bmatrix}
 \end{aligned}$$

equals the answer to part (c) as it should.

(9) (10 Pts) Fix $M \in \mathbb{F}_n^n$ and let $U = \{A \in \mathbb{F}_n^n \mid A^T M = -MA\}$ where A^T is A transpose.

(a) (5 pts) Prove that U is a subspace of \mathbb{F}_n^n .

Solution: $0_n^n \in U$ since $(0_n^n)^T M = 0_n^n = -M0_n^n$. If $A, B \in U$ we have $A^T M = -MA$ and $B^T M = -MB$ so for any $a, b \in \mathbb{F}$ we have

$$(aA + bB)^T M = aA^T M + bB^T M = -aMA - bMB = -M(aA + bB)$$

so $aA + bB \in U$. Therefore, U is a subspace of \mathbb{F}_n^n .

(b) (5 pts) Prove that for any $A, B \in U$ we have $AB - BA \in U$.

Solution: Suppose $A, B \in U$, so $A^T M = -MA$ and $B^T M = -MB$. Then we have

$$(AB - BA)^T M = (B^T A^T - A^T B^T)M = B^T A^T M - A^T B^T M = B^T (-MA) - A^T (-MB)$$

$$= -(B^T MA - A^T MB) = -(-MBA + MAB) = M(BA - AB) = -M(AB - BA)$$

so $AB - BA \in U$.

(10) (10 Pts) Let V be the real inner product space with basis $S = \{v_1, v_2\}$ and inner product $(v, w) = [v]_S^T M [w]_S$ where $M = [(v_i, v_j)] = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. Let $L : V \rightarrow V$ be a linear map represented by a matrix $A = {}_S[L]_S$ so $A[v]_S = [L(v)]_S$ for all $v \in V$.

(a) (5 Pts) What condition on A means that L an orthogonal map with respect to this inner product, that is, $(L(v), L(w)) = (v, w)$ for all $v, w \in V$? Justify your answer.

Solution: For all $v, w \in V$ the following would have to be true:

$$(L(v), L(w)) = [L(v)]_S^T M [L(w)]_S = (A[v]_S)^T M A [w]_S = [v]_S^T (A^T M A) [w]_S = [v]_S^T M [w]_S.$$

Using $v = v_i$ and $w = v_j$ in S , this says $\mathbf{e}_i^T (A^T M A) \mathbf{e}_j = \mathbf{e}_i^T M \mathbf{e}_j$ which means the (i, j) entries of matrices $A^T M A$ and M are equal, so $A^T M A = M$ is the condition on A .

(b) (5 Pts) Using your answer to part (a), determine whether the map

$$L(a_1 v_1 + a_2 v_2) = -a_2 v_1 + a_1 v_2$$

is orthogonal with respect to (\cdot, \cdot) on V .

Solution: $A = {}_S[L]_S = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ for this map since $L(v_1) = v_2$ and $L(v_2) = -v_1$.

We check

$$A^T M A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \neq M$$

shows that this map is not orthogonal with respect to (\cdot, \cdot) on V .
