
Math 507 Linear Algebra and Matrix Theory Fall 2025 Final Exam Feingold

Show work to justify your answers. AT denotes the transpose of matrix A.

(1) (15 Points) Let L : F2
2 → F2

2 be the linear transformation given by

L

([
a b
c d

])
=

[
(a− b− c) (a− c+ d)
(b+ c− d) (2a− c)

]
(a) (2 points) Find the set of all vectors in Ker(L).
(b) (2 points) Find a basis for Ker(L) and find dim(Ker(L)).
(c) (1 points) Is L injective? Explain why!
(d) (3 points) Find all vectors in Range(L).
(e) (3 points) Find a basis for Range(L) and find dim(Range(L)).
(f) (2 points) Is L onto? Explain why!
(g) (2 points) Is L invertible? Explain why! If so, find a formula for L−1.

(2) (20 Points, 4 pts each) Answer each question separately with a brief justification.
(a) Let L : V → W and let S = {v1, · · · , vn} be a basis for V . If L is injective, what is

the most you can say about the set of vectors L(S) = {L(v1), · · · , L(vn)}?
(b) If L : F3

4 → F7, find the best bounds a ≤ dim(Ker(L)) ≤ b.
(c) If L : F3 → F7, find the best bounds c ≤ dim(Range(L)) ≤ d.

(d) Let L : V → V where V = W1 ⊕W2 for L-invariant subspaces, W1 and W2, and let
L1 and L2 be the restrictions of L to these two subspaces. What is the relationship
between the charL(t), charL1

(t) and charL2
(t)?

(e) Continuing (d), what is the relationship between the minimal polynomials mL(t),
mL1

(t) and mL2
(t)?

(3) (20 Points, 4 pts each) Answer each question separately with a brief justification. V
is a vector space over a field F.

(a) If S = {v1, . . . , vn} ⊆ V is independent and vn+1 ∈ 〈S〉, and T = {v1, . . . , vn, vn+1},
what is the most you can say about dim(〈T 〉)?

(b) If S = {v1, . . . , vm} ⊆ V and vm+1 ∈ V but vm+1 /∈ 〈S〉 then what is the most you
can say about dim(〈S ∪ {vm+1}〉)?

(c) Let A ∈ Fmn with rank(A) = r. What is the most you can say about dim(Ker(LA))?

(d) If A ∈ Fnn has rank(A) = n, what is the most you can say about LA : Fn → Fn?

(e) If S = {v1, v2, . . . , vn} is a basis of V , what is the most you can say about the set
{[v1]S , [v2]S , . . . , [vn]S} of coordinates of vectors in S with respect to S?

(4) (15 Pts) Let V = R4 with the standard dot product, and let W = S⊥, the orthogonal

complement in V of S = {u1 = [ 1 2 1 3 ]
T
, u2 = [ 2 3 1 1 ]

T }.
Let T = {w1, w2} be the basis for W obtained by solving ui ·X = 0 for 0 ≤ i ≤ 2.

(a) (10 pts) Use Gram-Schmidt to get an orthogonal basis T ′ = {w′1, w′2} for W .

(b) (5 pts) Use T ′ to find the coefficients xi of the projection ProjW (v) = x1w
′
1 + x2w

′
2

of the general vector v = [ a b c d ]
T ∈ V into W .



(5) (15 Points) For the real matrix A =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 do the following.

(a) Find the characteristic polynomial charA(t), the eigenvalues of A, and their
algebraic multiplicities.

(b) Find the minimal polynomial mA(t). What does it tell you?
(c) Find the eigenspaces of A, their bases and geometric multiplicities.
(d) If A can be diagonalized, find diagonal matrix D and transition matrix P such that

D = P−1AP . Otherwise, find the Jordan Canonical Form matrix J similar to A.

(6) (15 Points) Suppose that A ∈ R12
12 has characteristic and minimal polynomials

charA(t) = (t− 5)7(t− 8)5 and mA(t) = (t− 5)4(t− 8)3.
Find all possible Jordan canonical form matrices J to which A might be similar,

but not to each other, and for each one give the pair of geometric multiplicities (g1, g2).

(7) (15 Points) Suppose that A ∈ R10
10 has characteristic and minimal polynomials

charA(t) = (t2 + 2t+ 3)5 and mA(t) = (t2 + 2t+ 3)2.
Find all possible Rational Canonical Form matrices R to which A might be sim-

ilar, but not to each other. In each case, how many cyclic subspaces occur in the
corresponding decomposition of R10?

(8) (15 Pts) Let L : R2
2 → R2 be the linear map L

([
a b
c d

])
=

[
a+ b+ d

3a+ 2b− c

]
and let S

and T be the standard bases of R2
2 and R2, respectively. Let other ordered bases be

S′ =

{[
1 1
1 1

]
,

[
1 1
1 0

]
,

[
1 1
0 0

]
,

[
1 0
0 0

]}
and T ′ =

{[
3
1

]
,

[
2
1

]}
.

(a) (2 pts) Find the matrix T [L]S representing L from S to T .
(b) (3 pts) Find a basis for Ker(L).
(c) (4 pts) Find the matrix T ′ [L]S′ representing L from S′ to T ′ directly (without using

transition matrices) by row reducing [T ′|L(S′)].
(d) (4 pts) Find the transition matrices SPS′ and T ′QT .
(e) (2 pts) Compute the product T ′QT T [L]S SPS′ . Compare it to part (c).

(9) (10 Pts) Fix M ∈ Fnn and let U = {A ∈ Fnn | ATM = −MA} where AT is A transpose.

(a) (5 pts) Prove that U is a subspace of Fnn.

(b) (5 pts) Prove that for any A,B ∈ U we have AB −BA ∈ U .

(10) (10 Pts) Let V be the real inner product space with basis S = {v1, v2} and inner

product (v, w) = [v]TSM [w]S where M = [(vi, vj)] =

[
2 −1
−1 2

]
. Let L : V → V be a

linear map represented by a matrix A = S [L]S so A[v]S = [L(v)]S for all v ∈ V .
(a) (5 Pts) What condition on A means that L an orthogonal map with respect to this

inner product, that is, (L(v), L(w)) = (v, w) for all v, w ∈ V ? Justify your answer.
(b) (5 Pts) Using your answer to part (a), determine whether the map

L(a1v1 + a2v2) = −a2v1 + a1v2 is orthogonal with respect to (·, ·) on V .



Math 507 Linear Algebra and Matrix Theory Fall 2025 Final Exam Solutions Feingold

(1) (15 points) (a) (2 points) To find all vectors in Ker(L), row reduce


1 −1 −1 0
1 0 −1 1
0 1 1 −1
2 0 −1 0

∣∣∣∣∣∣∣
0
0
0
0

 to


1 0 0 −1
0 1 0 1
0 0 1 −2
0 0 0 0

∣∣∣∣∣∣∣
0
0
0
0

 so

a = r
b = −r
c = 2r

d = r ∈ F

so
Ker(L) ={[

r −r
2r r

] ∣∣∣∣ r ∈ F
}
.

(b) (2 points) Ker(L) has basis

{[
1 −1
2 1

]}
and dim(Ker(L)) = 1.

(c) (1 points) L is not injective since Ker(L) is non-trivial.

(d) (3 points) All vectors: Range(L) =

{[
(a− b− c) (a− c+ d)
(b+ c− d) (2a− c)

]
∈ F2

2

∣∣∣∣ a, b, c, d ∈ F
}
.

Consistency condition:

[
w x
y z

]
∈ Range(L) iff 0 = w + x+ y − z.

(e) (3 points) Range(L) is spanned by the set of four vectors{
v1 =

[
1 1
0 2

]
, v2 =

[
−1 0
1 0

]
, v3 =

[
−1 −1
1 −1

]
, v4 =

[
0 1
−1 0

]}
and the Ker(L) being non-trivial means they are dependent. The basis vector of

Ker(L) gives the dependence relation v1 − v2 + 2v3 + v4 = θ, so v4 = −v1 + v2 − 2v3 is
redundant. A basis for Range(L) is then {v1, v2, v3} and dim(Range(L)) = 3.

(f) (2 points) L is not onto since dim(Range(L)) = 3 < 4 = dim(F2
2).

(g) (2 points) L is not invertible since it is not bijective.

(2) (20 Points, 4 pts each) Answer (with brief justification) each question separately.
(a) For L : V → W injective and S = {v1, · · · , vn} a basis for V , we can say that

L(S) = {L(v1), · · · , L(vn)} is a basis of Range(L).

(b) Since L : F3
4 → F7, we know 12 = dim(F3

4) = dim(Ker(L)) + dim(Range(L)). But
0 ≤ dim(Range(L)) ≤ 7, so 5 ≤ dim(Ker(L)) ≤ 12.

(c) Since L : F3 → F7, we know 3 = dim(F3) = dim(Ker(L)) + dim(Range(L)). But
0 ≤ dim(Ker(L)) ≤ 3, so 0 ≤ dim(Range(L)) ≤ 3.

(d) L : V → V where V = W1 ⊕W2 for L-invariant subspaces, W1 and W2, and Li =
L|Wi . If B = B1 ∪ B2 is a basis of V where Bi is a basis of Wi, then B [L]B =
diag(B1 [L1]B1 ,B2 [L2]B2) is block diagonal, so charL(t) = charL1(t)charL2(t) since the
characteristic polynomial of a block diagonal matrix is the product of the characteristic
polynomials of each block.

(e) Continuing (d), the relationship of the minimal polynomialsmL(t) = lcm(mL1(t),mL2(t)).



(3) (20 Points, 4 pts each) Answer (with brief justification) each question separately.
SOLUTIONS:

(a) If S = {v1, . . . , vn} ⊆ V is independent and vn+1 ∈ 〈S〉, and T = {v1, . . . , vn, vn+1},
then 〈S〉 = 〈T 〉 so dim(〈T 〉) = dim(〈S〉) = n.

(b) If S = {v1, . . . , vm} ⊆ V and vm+1 /∈ 〈S〉 then vm+1 is not a redundant vector in
S ∪ {vm+1} so dim(〈S ∪ {vm+1〉) = dim(〈S〉) + 1 ≤ m+ 1.

(c) Let A ∈ Fmn with rank(A) = r. You can say dim(Ker(LA)) = n − r since there will
be n− r columns without leading ones in the RREF matrix row equivalent to A.

(d) If A ∈ Fnn has rank(A) = n, then LA : Fn → Fn has trivial kernel, so it is injective,
so it is surjective, bijective, invertible and an isomorphism.

(e) The set of coordinates {[v1]S , [v2]S , . . . , [vn]S} is the standard basis of Fn.

(4) (15 Points) Let V = R4 with the standard dot product, and let W = S⊥, the orthog-

onal complement in V of S = {u1 = [ 1 2 1 3 ]
T
, u2 = [ 2 3 1 1 ]

T }.
Let T = {w1, w2} be the basis for W obtained by solving ui ·X = 0 for 0 ≤ i ≤ 2.

(a) (10 pts) Use Gram-Schmidt to get an orthogonal basis T ′ = {w′1, w′2} for W .
Solution: W = {X ∈ R4 | X · ui = 0, i = 1, 2} is found by row reducing

[
1 2 1 3
2 3 1 1

∣∣∣∣ 00
]

to

[
1 0 −1 −7
0 1 1 5

∣∣∣∣ 00
]

so

x1 = r + 7s
x2 = −r − 5s

x3 = r
x4 = s ∈ R

so T =




1
−1
1
0


w1

,


7
−5
0
1


w2


Gram-Schmidt gives w′1 = w1, and

w′2 = w2−
w2 · w′1
w′1 · w′1

w′1 = w2−
12

3
w′1 =


7
−5
0
1

−4


1
−1
1
0

 =


3
−1
−4
1

 so T ′ =




1
−1
1
0


w′

1

,


3
−1
−4
1


w′

2


.

(b) (5 pts) Use T ′ to find the coefficients xi of the projection ProjW (v) = x1w
′
1 + x2w

′
2

of the general vector v = [ a b c d ] ∈ V into W .
Solution: Since T ′ is an orthogonal basis of W , we have

xi =
v · w′i
w′i · w′i

so x1 =
a− b+ c

3
, x2 =

3a− b− 4c+ d

27
.



(5) (15 Points) (a) (3 pts) The characteristic polynomial charA(t) is det(tI4 − A) =
(t2 − 1)2 = (t − 1)2(t + 1)2. The eigenvalues are λ1 = 1 and λ2 = −1 with algebraic
multiplicities k1 = 2 and k2 = 2.

(b) (2 pts) The minimal polynomial is mA(t) = (t− 1)(t+ 1) = t2− 1 since A2 = I4. A is
diagonalizable because mA(t) = (t− 1)(t+ 1) is a product of distinct linear factors.

(c) Find the eigenspaces of A, their bases and geometric multiplicities.
(3 pts) We find the λ1-eigenspace by row reducing [A− I4|041] =

−1 0 0 1
0 −1 1 0
0 1 −1 0
1 0 0 −1

∣∣∣∣∣∣∣
0
0
0
0

 to


1 0 0 −1
0 1 −1 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0
0
0
0

 so

x1 = s
x2 = r
x3 = r

x4 = s ∈ R

, so

Aλ1 =



s
r
r
s

 ∈ R4

∣∣∣∣ r, s ∈ R

 has basis




0
1
1
0

 ,


1
0
0
1


 so g1 = 2.

(3 pts) We find the λ2-eigenspace by row reducing [A+ I4|041] =
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

∣∣∣∣∣∣∣
0
0
0
0

 to


1 0 0 1
0 1 1 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
0
0
0
0

 so

x1 = −s
x2 = −r
x3 = r

x4 = s ∈ R

, so

Aλ2 =



−s
−r
r
s

 ∈ R4

∣∣∣∣ r, s ∈ R

 has basis




0
−1
1
0

 ,

−1
0
0
1


 so g2 = 2.

(d) (4 pts) Eigenbasis T =




0
1
1
0

 ,


1
0
0
1

 ,


0
−1
1
0

 ,

−1
0
0
1


 gives P = SPT =


0 1 0 −1
1 0 −1 0
1 0 1 0
0 1 0 1


transition matrix such that P−1AP = D = diag(1, 1,−1,−1).



(6) (15 Points) charA(t) = (t − 5)7(t − 8)5 and mA(t) = (t − 5)4(t − 8)3 so the two
eigenvalues are λ1 = 5 and λ2 = 8 with k1 = 7 and k2 = 5. The powers in the
minimal polynomial m1 = 4 and m2 = 3 tell the sizes of the largest Jordan blocks for
each eigenvalue. Let

B = J(5, 4) =


5 1 0 0
0 5 1 0
0 0 5 1
0 0 0 5

 C = J(5, 3) =

 5 1 0
0 5 1
0 0 5

 , D = J(5, 2) =

[
5 1
0 5

]

E = J(8, 3) =

 8 1 0
0 8 1
0 0 8

 , F = J(8, 2) =

[
8 1
0 8

]
then there are six possible Jordan canonical form matrices similar to A, corresponding
to the three partitions of 7 with largest part 4, 4 + 3 = 4 + 2 + 1 = 4 + 1 + 1 + 1, and
the two partitions of 5 with largest part 3, 3 + 2 = 3 + 1 + 1:

Diag(B,C,E, F ), Diag(B,D, 5, E, F ), Diag(B, 5, 5, 5, E, F ),

Diag(B,C,E, 8, 8), Diag(B,D, 5, E, 8, 8), Diag(B, 5, 5, 5, E, 8, 8))

The corresponding pairs of geometric multiplicities (g1, g2) are the numbers of Jordan
blocks, (2, 2), (3, 2), (4, 2), (2, 3), (3, 3), (4, 3) respectively.

(7) (15 Points) The characteristic and minimal polynomials are
charA(t) = (t2 + 2t+ 3)5 and mA(t) = (t2 + 2t+ 3)2 = t4 + 4t3 + 10t2 + 12t+ 9.
Define the companion matrices (4 pts, 3 pts)

C1 = C((t2 + 2t+ 3)2) =


0 0 0 −9
1 0 0 −12
0 1 0 −10
0 0 1 −4

 , C2 = C(t2 + 2t+ 3) =

[
0 −3
1 −2

]
.

(8 pts) Then there are two possible rational canonical form matrix similar to A,
Diag(C1, C1, C2) and Diag(C1, C2, C2, C2). These are the only ways to get the given
charA(t) as the product of the characteristic polynomials of each companion block,
and the given minimal polynomial mA(t) as the least common multiple of the minimal
polynomials of those companion blocks. In each case the number of cyclic subspaces
occurring in the corresponding decomposition of R10 is the number of companion
matrices, 3 in the first case, 4 in the second case.



(8) (15 Pts) Let L : R2
2 → R2 be the linear map L

([
a b
c d

])
=

[
a+ b+ d

3a+ 2b− c

]
and let S

and T be the standard bases of R2
2 and R2, respectively. Let other ordered bases be

S′ =

{[
1 1
1 1

]
,

[
1 1
1 0

]
,

[
1 1
0 0

]
,

[
1 0
0 0

]}
and T ′ =

{[
3
1

]
,

[
2
1

]}
.

(a) (2 pts) Find the matrix T [L]S representing L from S to T .

Solution: The matrix T [L]S =

[
1 1 0 1
3 2 −1 0

]
by row reducing [T |L(S)].

(b) (3 pts) Find a basis for Ker(L).

Solution: To find Ker(L) row reduce

[
1 1 0 1 0
3 2 −1 0 0

]
to

[
1 0 −1 −2 0
0 1 1 3 0

]
giving solutions a = c+ 2d, b = −c− 3d with c and d free variables. Thus,

Ker(L) =

{[
c+ 2d −c− 3d
c d

]
∈ R2

2 | c, d ∈ R
}

, which has basis

{[
1 −1
1 0

]
,

[
2 −3
0 1

]}
.

(c) (4 pts) Find the matrix T ′ [L]S′ representing L from S′ to T ′ directly (without using
transition matrices) by row reducing [T ′|L(S′)].
Solution: We row reduce 3 2

1 1
T ′

∣∣∣∣∣∣∣ 3 2 2 1
4 4 5 3

L(S′)

 to

 1 0
0 1
I2

∣∣∣∣∣∣∣−5 −6 −8 −5
9 10 13 8

T ′ [L]S′

 so T ′ [L]S′ =

[
−5 −6 −8 −5
9 10 13 8

]

(d) (4 pts) Find the transition matrices SPS′ and T ′QT .

Solution: The transition matrices SPS′ =


1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0

 and TQT ′ =

[
3 2
1 1

]
since

S and T are the standard bases. Then T ′QT = (TQT ′)−1 =

[
1 −2
−1 3

]
.

(e) (2 pts) Compute the product T ′QT T [L]S SPS′ . Compare it to part (c).
Solution: The matrix product

T ′QT T [L]S SPS′ =

[
1 −2
−1 3

] [
1 1 0 1
3 2 −1 0

] 
1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0


=

[
−5 −3 2 1
8 5 −3 −1

] 
1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0

 =

[
−5 −6 −8 −5
9 10 13 8

]

=

[
1 −2
−1 3

] [
3 2 2 1
4 4 5 3

]
equals the answer to part (c) as it should.



(9) (10 Pts) Fix M ∈ Fnn and let U = {A ∈ Fnn | ATM = −MA} where AT is A transpose.

(a) (5 pts) Prove that U is a subspace of Fnn.

Solution: 0nn ∈ U since (0nn)TM = 0nn = −M0nn. If A,B ∈ U we have ATM = −MA
and BTM = −MB so for any a, b ∈ F we have

(aA+ bB)TM = aATM + bBTM = −aMA− bMB = −M(aA+ bB)

so aA+ bB ∈ U . Therefore, U is a subspace of Fnn.

(b) (5 pts) Prove that for any A,B ∈ U we have AB −BA ∈ U .

Solution: Suppose A,B ∈ U , so ATM = −MA and BTM = −MB. Then we have

(AB −BA)TM = (BTAT −ATBT )M = BTATM −ATBTM = BT (−MA)−AT (−MB)

= −(BTMA−ATMB) = −(−MBA+MAB) = M(BA−AB) = −M(AB −BA)

so AB −BA ∈ U .

(10) (10 Pts) Let V be the real inner product space with basis S = {v1, v2} and inner

product (v, w) = [v]TSM [w]S where M = [(vi, vj)] =

[
2 −1
−1 2

]
. Let L : V → V be a

linear map represented by a matrix A = S [L]S so A[v]S = [L(v)]S for all v ∈ V .
(a) (5 Pts) What condition on A means that L an orthogonal map with respect to this

inner product, that is, (L(v), L(w)) = (v, w) for all v, w ∈ V ? Justify your answer.

Solution: For all v, w ∈ V the following would have to be true:

(L(v), L(w)) = [L(v)]TSM [L(w)]S = (A[v]S)TMA[w]S = [v]TS (ATMA)[w]S = [v]TSM [w]S .

Using v = vi and w = vj in S, this says eTi (ATMA)ej = eTi Mej which means the (i, j)
entries of matrices ATMA and M are equal, so ATMA = M is the condition on A.

(b) (5 Pts) Using your answer to part (a), determine whether the map
L(a1v1 + a2v2) = −a2v1 + a1v2 is orthogonal with respect to (·, ·) on V .

Solution: A = S [L]S =

[
0 −1
1 0

]
for this map since L(v1) = v2 and L(v2) = −v1.

We check

ATMA =

[
0 1
−1 0

] [
2 −1
−1 2

] [
0 −1
1 0

]
=

[
−1 2
−2 1

] [
0 −1
1 0

]
=

[
2 1
1 2

]
6= M

shows that this map is not orthogonal with respect to (·, ·) on V .


