NAME (Printed):						
	Math 507	Advanced Linear	Algebra	Fall 2025	Quiz 2	Feingold
INSTRUCTIONS: For each problem fill in the blank or circle your choice of the most accurate answer. For all problems, let $A \in \mathbb{F}_n^m$ be an $m \times n$ matrix of numbers from field \mathbb{F} , let $0 \in \mathbb{F}^m$ be the $m \times 1$ zero matrix, and let $L_A : \mathbb{F}^n \to \mathbb{F}^m$ be the function associated with A defined as $L_A(X) = AX$. Each answer is worth one point. No justifications of answers are needed.						
(1)	If A row reduces to matrix C in RREF with r non-zero rows, then the homogeneous linear system $AX = 0$ has exactly free variables in its solution.					
(2)	2) If the linear system $AX = 0$ has a non-trivial solution, then $rank(A)$					
(3)		n then as a function $ible inflamable$				bijective.
(4)	In general, for	$A \in \mathbb{F}_n^m$, we only k	r_0 that r_0	$unk(A) \leq \underline{\hspace{1cm}}$		<u></u> .
(5)		as a function L_A : $ctive$ $surjective$	$\mathbb{F}^n o \mathbb{F}^m$ ca	annot be (ci	rcle correc	et answer)

Math 507 Advanced Linear Algebra Fall 2025 Quiz 2 Solutions Feingold INSTRUCTIONS: For each problem fill in the blank or circle your choice of the most accurate answer. For all problems, let $A \in \mathbb{F}_n^m$ be an $m \times n$ matrix of numbers from field \mathbb{F} , let $\mathbf{0} \in \mathbb{F}^m$ be the $m \times 1$ zero matrix, and let $L_A : \mathbb{F}^n \to \mathbb{F}^m$ be the function associated with A defined as $L_A(X) = AX$. Each answer is worth one point. No justifications of answers are needed.

- (1) If A row reduces to matrix C in RREF with r non-zero rows, then the homogeneous linear system $AX = \mathbf{0}$ has exactly n r free variables in its solution.
- (2) If the linear system $AX = \mathbf{0}$ has a non-trivial solution, then $rank(A) \leq n$.
- (3) If rank(A) = m then then as a function L_A is surjective.
- (4) In general, for $A \in \mathbb{F}_n^m$, we only know that $rank(A) \leq Min(m, n)$.
- (5) If m < n then then as a function L_A cannot be <u>injective</u> since $rank(A) = r \le m < n$ so there are n r > 0 free variables in the solutions to $AX = \mathbf{0}$.