ATIONS: I	Advanced Linear Algebra a the blanks. No reasons n \mathbb{R} is the real numbers, \mathbb{C} is the ajugate of A is $\overline{A} = [\bar{a}_{ij}]$. Each	· ·	Quiz 9 - 10	Feingold				
ATIONS: I	$\mathbb R$ is the real numbers, $\mathbb C$ is the	· ·	stify your ansv	TONG				
omplex cor		complex num		Fill in the blanks. No reasons needed to justify your answers.				
	$I_{\alpha} = [\alpha_{ij}]$. Lacing			$1 = [a_{ij}] \in \mathbb{C}_n^m,$				
			$\in \mathbb{R}^n$, then the	relationship				
				$\in \mathbb{R}^n$, implies				
conjugate c	of W . If $A, B \in \mathbb{C}_n^n$ and (AZ) .	$W = Z \cdot (BV)$						
$\overline{\det(A)}$ for a	any matrix A , we can say that	for A unitary,	$\det(A) = z = a$					
	For $v_1, \dots, v_1+\dots+v $ The Triang that for any chat for any conjugate of relationship A matrix A $\overline{\det(A)}$ for a	For $v_1, \dots, v_k \in \mathbb{R}^n$, the most general s $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1+\dots+v_k ^2 + v_1+\dots+v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1+\dots+v_k ^2 + v_1+\dots+v_k ^2$ is where $ v_1+\dots+v_k ^2 = v_1+\dots+v_k ^2 + v$	For $v_1, \dots, v_k \in \mathbb{R}^n$, the most general situation when $ v_1 + \dots + v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is when the set $\{v_1, \dots, v_k \in \mathbb{R}^n \times \mathbb{R}^n \in \mathbb{R}^n \in \mathbb{R}^n \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^$	For $v_1, \dots, v_k \in \mathbb{R}^n$, the most general situation when you can be so $ v_1 + \dots + v_k ^2 = v_1 ^2 + \dots + v_k ^2$ is when the set $\{v_1, \dots v_k\}$ is				

Show all work for these problems.

(6) (2 Pts) Show that $M = [m_{ij}] = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ is **positive definite**.

(7) (3 Pts) The matrix M from (6) defines an inner product on \mathbb{R}^3 by the formula $(X,Y)=X^TMY$. Let $S=\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ be the standard basis of \mathbb{R}^3 and let $\theta_{X,Y}$ be the angle between X and Y in the geometry determined by M. Then:

$$\cos(\theta_{\mathbf{e}_1,\mathbf{e}_2}) = \cos(\theta_{\mathbf{e}_2,\mathbf{e}_3}) =$$
 and $\cos(\theta_{\mathbf{e}_1,\mathbf{e}_3}) =$

Fill in the blanks. No reasons needed to justify your answers, but justifications were included in the solutions for your understanding.

NOTATIONS: \mathbb{R} is the real numbers, \mathbb{C} is the complex numbers. For any $A = [a_{ij}] \in \mathbb{C}_n^m$, the complex conjugate of A is $\overline{A} = [\overline{a}_{ij}]$. Each problem is worth 1 point.

- (1) If $A, B \in \mathbb{R}_n^n$ and $(AX) \cdot Y = X \cdot (BY)$ for all $X, Y \in \mathbb{R}^n$, then the **relationship** between A and B is: $\underline{A^T = B}$. **Justification**: $(AX) \cdot Y = (AX)^T Y = X^T A^T Y = X \cdot (A^T Y) = X \cdot (BY)$ so $X \cdot (A^T Y BY) = 0$ is true for all $X, Y \in \mathbb{R}^n$. This being true for all $X \in \mathbb{R}^n$ gives $0_1^n = A^T Y BY = (A^T B)Y$, and that being true for all $Y \in \mathbb{R}^n$ gives $A^T B = 0_n^n$ so $A^T = B$.
- (2) For $v_1, \dots, v_k \in \mathbb{R}^n$, the **most general situation** when you can be sure $||v_1 + \dots + v_k||^2 = ||v_1||^2 + \dots + ||v_k||^2$ is when the set $\{v_1, \dots v_k\}$ is <u>orthogonal</u>. **Justification**: This is the generalized Pythagorean Theorem.
- (3) The Triangle Inequality in \mathbb{R}^n , $||X + Y|| \le ||X|| + ||Y||$ for any $X, Y \in \mathbb{R}^n$, implies that for any $v_1, \dots, v_k \in \mathbb{R}^n$ we have $||v_1 + \dots + v_k|| \le ||v_1|| + \dots + ||v_k||$.

 Justification: Follows from the Triangle Inequality by induction on k.
- (4) For $Z,W \in \mathbb{C}^n$ we have the dot product $Z \cdot W = Z^T \overline{W}$, where \overline{W} is the complex conjugate of W. If $A,B \in \mathbb{C}^n_n$ and $(AZ) \cdot W = Z \cdot (BW)$ for all $Z,W \in \mathbb{C}^n$, then the **relationship** between A and B is: $\overline{A}^T = B$. **Justification**: $(AZ) \cdot W = (AZ)^T \overline{W} = Z^T A^T \overline{W} = Z^T (\overline{A}^T W) = Z \cdot (\overline{A}^T W) = Z \cdot (BW)$ true for all $Z,W \in \mathbb{C}^n$. The rest of the argument is as in problem (1).
- (5) A matrix $A \in \mathbb{C}_n^n$ is called **unitary** when $\overline{A}^T = A^{-1}$. Using the fact that $\det(\overline{A}) = \overline{\det(A)}$ for any matrix A, we can say that for A unitary, $\det(A) = z = a + b\mathbf{i} \in \mathbb{C}$ must satisfy the condition $z\overline{z} = a^2 + b^2 = 1$. **Justification**: $\overline{A}^T = A^{-1}$ means $I_n = A\overline{A}^T$ so $1 = \det(I_n) = \det(A\overline{A}^T) = \det(A)\det(\overline{A}^T) = \det(A)\det(\overline{A}^T) = \det(A)\det(\overline{A}^T) = \det(A)\det(\overline{A}^T) = a^2 + b^2$. Note that for $z = a + b\mathbf{i} \in \mathbb{C}$, $\overline{z} = a b\mathbf{i}$ so $z\overline{z} = (a + b\mathbf{i})(a b\mathbf{i}) = a^2 + b^2$. Then the condition on z is that $a^2 + b^2 = 1$, which is a circle in \mathbb{C} , which could be written as $\{z = a + b\mathbf{i} = \cos(\phi) + \mathbf{i}\sin(\phi) \in \mathbb{C} \mid 0 \le \phi \le 2\pi\}$.

Show all work for these problems.

(6) (2 Pts) Show that $M = [m_{ij}] = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$ is **positive definite**.

Solution: We have $\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz = x^2 + (x - y)^2 + (x -$

 $x^2 + (x - y)^2 + (y - z)^2 + z^2 \ge 0$ since it is the sum of real squares. That expression is 0 iff 0 = x = x - y = y - z = z iff x = y = z = 0 so M is positive definite.

(7) (3 Pts) The matrix M from (6) defines an inner product on \mathbb{R}^3 by the formula $(X,Y)=X^TMY$. Let $S=\{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\}$ be the standard basis of \mathbb{R}^3 and let $\theta_{X,Y}$ be the angle between X and Y in the geometry determined by M. Then:

$$\cos(\theta_{\mathbf{e}_1,\mathbf{e}_2}) = \qquad \qquad \cos(\theta_{\mathbf{e}_2,\mathbf{e}_3}) = \qquad \qquad \text{and} \qquad \cos(\theta_{\mathbf{e}_1,\mathbf{e}_3}) =$$

Solution: Let $M = [m_{ij}]$ from (1). Since $(\mathbf{e}_i, \mathbf{e}_j) = \mathbf{e}_i^T M \mathbf{e}_j = m_{ij}$ and

$$\cos(\theta_{\mathbf{e}_i,\mathbf{e}_j}) = \frac{\langle \mathbf{e}_i, \mathbf{e}_j \rangle}{(||\mathbf{e}_i||)(||\mathbf{e}_j||)} = \frac{m_{ij}}{\sqrt{2}\sqrt{2}} = \frac{m_{ij}}{2}$$

we get

$$\cos(\theta_{\mathbf{e}_1,\mathbf{e}_2}) = \frac{-1}{2} \qquad \cos(\theta_{\mathbf{e}_2,\mathbf{e}_3}) = \frac{-1}{2} \qquad \text{and} \qquad \cos(\theta_{\mathbf{e}_1,\mathbf{e}_3}) = 0$$