USEFUL LIMITS

You should **know** the following limits. They may be used on Test 3 and the Final. The limits involving n are useful when using the root and ratio tests. The limits involving x are included, in case you are interested.

"→"	means " $\lim_{n \to \infty}$ "	
0)	$a^n \to 0$ if $ a < 1$	$\lim_{x \to \infty} a^x = 0 \text{ if } 0 < a < 1$
1)	$a^{\frac{1}{n}} \to 1$ if $a > 0$	$\lim_{x \to \infty} a^{\frac{1}{x}} = 1 \text{ if } 0 < a < 1$
2)	$n^{\frac{1}{n}} \to 1$	$\lim_{x \to \infty} x^{\frac{1}{x}} = 1$
3)	$\left(1+\frac{a}{n}\right)^n \to e^a$	$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a$
4)	$\frac{\ln n}{n^p} \to 0 \text{ if } p > 0$	$\lim_{x \to \infty} \frac{\ln x}{x^p} = 0 \text{ if } p > 0$
5)	$\frac{n^p}{b^n} \to 0 \text{ if } b > 1$	$\lim_{x \to \infty} \frac{x^p}{b^x} = 0 \text{ if } b > 1$
6)	$\frac{a^n}{n!} \to 0$	The continuous version

The continuous version involves the Gamma function.

 $\lim_{n \to \infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0}{b_m n^m + b_{m-1} n^{m-1} + \dots + b_1 n + b_0} = \lim_{n \to \infty} \frac{a_k n^k}{b_m n^m}$ 7)

The continuous version is, of course, also true.

Notes:

- A) From 2) and the "pinching" or "squeeze" theorem it follows that $(\ln n)^{1/n} \to 1$ and then that $(\ln \ln n)^{1/n} \to 1$ and then
- B) 4), 5), and 6) show the relative rates at which $\ln n \to \infty$, powers of n go to ∞ , exponentials go to ∞ , and factorials go to infinity.