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1. INTRODUCTION

The theory of Kac-Moody Lie algebras, which originated in the works
of Kac [K1], Moody [Mo], and Kantor [Kan], has been developing in
two rather unrelated directions. In one direction, the affine Kac—-Moody
algebras, or central extensions of loop algebras, and their representations
were found to be related to numerous mathematical and physical theories
(see [Fr2, G] for reviews). This continues to be an extensive and
promising field of research. In another direction, the general theory of
Kac-Moody algebras and their representations has developed more slowly
into a somewhat isolated field with few applications. For the most part,
efforts have been directed toward generalizing various results from the
theory of finite dimensional simple Lie algebras and the corresponding
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groups. This work has often required sophisticated generalizations of the
classical techniques. (See, e.g., [Mat] for an excellent example of this
program.)

The fundamental difficulties in the general theory or Kac-Moody
algebras appear because we lack an understanding of their internal struc-
ture and, in particular, their geometrical nature. Very few facts are known
which are really intrinsic to the non-affine Kac-Moody algebras. Even
those few which were obtained indicate an enormous richness of structure
and a possibly deep connection of the non-affine algebras with number
theory: e.g., the theory of quadratic forms, modular forms, adeles, etc. In
the theory of non-affine algebras the first problem encountered is the difficult
one of determining root and weight multiplicities. In [FF] we began to
study a certain rank 3 hyperbolic Kac-Moody algebra, #, which we
believe can be thought of as the simplest generic example of non-affine
Kac-Moody algebras. We identified the root system and weight lattice of
& with certain integral binary quadratic forms, and the Weyl group as the
extended modular group, PGL(2, Z), acting naturally on quadratic forms.
This immediately implies that the root and weight multiplicities are integer
valued functions of the classes, and as such should have a number theoretic
meaning. The hyperbolic algebra & has an affine subalgebra % of type
A", and the central element of that subalgebra provides a Z-grading
F=3,.:%, We refer to &, as the nth Jevel of #. Using the representa-
tion theory of the affine subalgebra, in [FF] we found all the root
multiplicities on levels n=0, +1, +2. Our work was further developed in
[Fr1, Bl, KMW, Kal, Ka2]. In [B!] Borcherds introduced a class of
generalized Kac-Moody algebras, and in some special cases he determined
the root multiplicities. This allowed him to deduce from the “denominator
formula” some remarkable new identities for modular functions, some of
them related to Monstrous Moonshine [B2].

The method of constructing # given in [FF] was influenced by the
work of Kantor [Kan], and has a straightforward generalization to the
construction of other graded algebras; for example, the Lorentzian Kac-
Moody algebras. In this paper we show how our methods can be applied
to the construction of modules for these algebras, and to the determination
of the weight multiplicities on the first few levels. In Section 2 we explicitly
construct certain representations of graded Lie algebras. This parallels the
construction in [FF] of the graded algebra itself from its local part. Each
module is explicitly described as a quotient of an induced representation of
g=@®,.,8, from a representation of g* =, .8, which is a trivial
extension of a representation of g,. We apply this construction to hyper-
bolic and Lorentzian Kac-Moody algebras in Section 3. If the subalgebra
g, is an affine Kac-Moody algebra, then the Dynkin diagram of g is
obtained from the diagram of g, by adding one point, connected by one
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line to one point of the affine diagram. In this case, our construction of
representations gives all irreducible highest weight modules for g, and we
obtain an explicit description of the first two or three levels of the module
in terms of g,-modules. Finally, we apply these results to the determination
of level 2 weight multiplicities in fundamental modules for the rank 3
hyperbolic algebra #.

We end the Introduction with several remarks on prospects for further
work. Since our construction of representations of graded Lie algebras is
quite general, it can be used in a great variety of settings. For example, it
applies to the construction of highest weight representations of finite
dimensional simple Lie algebras, representations of graded Lie algebras of
Cartan type, and representations of the generalized Kac-Moody Lie
algebras of Borcherds. A more detailed analysis of our construction of
modules for the Lorentzian Kac-Moody algebras, combined with the
techniques of Kang, should allow the extension of our explicit weight
multiplicity formulas to a few more levels. As already mentioned, an
important unsolved problem in Kac-Moody theory is the determination of
all weight multiplicities (even in just one module), preferably in a Weyl
group invariant fashion. Our results can be used to find and test conjec-
tures about the answer to this problem. Thus, our present work should be
considered as one of the very first steps toward the understanding of the
intrinsic structure of the highest weight modules for non-affine Kac-Moody
algebras.

2. CONSTRUCTIONS OF GRADED ALGEBRAS AND REPRESENTATIONS

Let
2o =8 DEDE (2.1

be a vector space over C. Suppose there is an antisymmetric bilinear
product (called “bracket”)

[s]5gixgj"’gi+,‘ (2.2)
defined when i, j, i+,je {0, +1}, and such that the Jacobi identity is

satisfied when the brackets are defined. In particular, this says that g, is a
Lie algebra and g_, and g, are g,-modules. Define a Z-graded Lie algebra

G=Y G, (2.3)
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where G,=g, for —1<n<1 and where

G*=3% G, and G =) G._, (2.4)
nz1

nzl

and the free Lie algebras generated by G, and G _,, respectively. So for
n>=1, G, (respectively, G_ ) is spanned by all formal brackets of n vectors
from G, (respectively, G ). There is a canonical extension of the bracket
(2.2) from g, to all of G such that the Jacobi identity is satisfied on G. The
Lie algebra G satisfies

[Gia Gl] CGH—j! i’ jEZ, (25)
and contains two canonical graded ideals [FF, Section 4]

Jr=3 J,., (2.6)

n>1

where
Jow={x€CG [y, [yas e [¥n-1,x]1..]]=0forall y,eG.,}. (2.7)
Then
J=J"®J (2.8)
is a natural ideal in G, and we call the Z-graded quotient
g=G/J (29)

the Lie algebra associated with g,... In many important applications we
will see that g is a simple Lie algebra.
For any vector space V' we denote by T(V) the tensor algebra over V,

TIN=CeVa(VeaV)e(VelreV)®..., (2.10)
and by S(V) the symmetric algebra over V,
S(V)y=T(V)/1, (2.11)

where [ is the ideal of T(V) generated by {v,®v,—v.®uv,|v(,v,€V}.
Denote by V* the dual space of linear functionals on V.

We now construct a representation of g. Let U be any g,-module and let
V=g ,. Define the graded g,-module

H=TV)®U=>Y H_, (2.12)

nz0
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where H_,=V® --- ® V® U with n tensor factors of V for n 2 0. We can
extend the action of g, on H to an g, as follows. For v,,..,v,€eV,
v, el leth=0,® ---®v,®v,, ,€H_, and define

x-h=x®h if xeg_,=V, (213)

xh=Yv,® ...(xv)...0,,, if xeg,, (2.14)

xh=Y v, ® ...06,...[x,0,]v,...0,,, if xeg,, (2.15)
i< f

where ¢, means v, was removed and the summations run from 1 to n+ 1.
This action of g,,. uniquely determines an action of G on H (for example,
[x,y}-h=x-(y-h)—y-(x-h) for he H, x, ye G*) such that

G,oH ,—»H

— m-—hn»

meZ, n30. (2.16)

PROPOSITION 2.1. H is a G-module.

Proof. H is a G-module if for all x, ye G, he H,
[x, y]-h=x-(y-h)—y-(x-h). (2.17)

For x, ye G*, the right side of (2.17) is the definition of the left side. It is
sufficient to verify (2.17) for x, ye€g,,.. Since (2.14) is the usual definition
of H as a gg-module, (2.17) is valid for x, yeg,. Let h=v,®...®
vn+l€H~n'

If xego, yeg_,, then x-y=[x, y]1€Bioe, 50 x-(y-h)=x-(y@h)=
(x-»)®h+y@(x-h)y=[x, y]1-h+y-(x h)

If xeg, and yeg , then x-(y-M)=x-(yQh)=7®@[x, v]-h+
y®(x-hy=[x,y]-h+y-(x-h).

Let xeg,, yeg, and let

Y'=5% 0,@.. 6. (xv) . [0 0,0
i<j
k#1i,j

Then we have

x (yh=Y+Y 0,®... 6. (x([yv]0)) v,y

i<y

yo(e-)=Y+Y 0,®.. 6. ([yx-v]v)...0,,,

i<j

+ Z v ®...0 ... ([y,v:] '(x'vj))"' Unsts

i<j
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and
[x, 3]1-h=Y v,®...0,...([[x, ¥ v, ]-v) ... 0,4,
i<j
The Jacobi identity in g,.. and the cases already established give
[Lx yLed-o=x-([y.0d-0)— [» [xod] o= Dol (x-0)  (218)
which finishes the proof. |

We can explicitly describe the action of G on H as determined by the
action of g,,.. For xe G~ the action is obvious from (2.13). For xe G* we
have the following result.

DerFiNiTION.  For x4, ..., x; in any Lie algebra let
[x;, x5, x,]=1[... [[xy, x21, x5 ..., x,].

ProrosiTiON 2.2. Let xeG,, k=1, and h=v,® - ®v,,, e H ,.
Then we have

x-h= 3 0y ®...0, By @[ 0, Vs 0,10, @ - U,y

i< <l

Proof. The statement is true for k=1 by (2.15). Assuming the state-
ment is true for xe G, |, it is sufficient to show it is true for [x, v]eG,,
where ye G,. We have

[x, y]-h=x-(y-h)—y-(x-h), (2.19)
where
x-(y-h)=x-<z 0 ®... 0 [y ], v,,+,> (2.20)
i<y
and

y~(x-h)=y-( Y 0 ®..b, .0

< - <y

S (5, SO POS FR I  PRRUO 1)- (2.21)

When we expand (2.20) (respectively, (2.21)) using the inductive assump-
tion (respectively, using (2.15)) there are three types of terms: those where
[ y,v;]-v; (respectively, [x,v,, ... v, ,1-v,) is neither removed nor acted



HYPERBOLIC KAC—MOODY ALGEBRAS 439

on, those where it is not removed but is acted on, and those where it is
removed to act on another factor. The first types of terms in (2.20) and in
(2.21) are the same, so are cancelled in (2.19). The remaining terms give

[x,v]-h= ¥ Y 0, ®..6, b [ v, b0, ]

i< - <ip,y l€Sngk

‘([}'» Ui,,] .Uu.|) e Uyy

+ > Yo oo, ®...6; ... 0, ...

<..<ig.1lsn<r<k

SR (5 A FRR :FUORE {15 UAR L) IR IOV - I LAY

- Y Y o0, ®..8, ... [yy,]

h<..<ip, 1<€<n<k

ALx Ui e B U 10, ) Uy

- Y u®. b, .0 [y, ey, 100,]

<. . <igal
v Upyas- (2.22)

ke

The proposition then follows from the identity

Y x vy, byt 3 [rnv, 1]

lsnsk
+ Z [x, vy o ([0, 10,0, v, ]
lsn<r<k
[y [xovg ety 5 0,1]
=[[x, ¥) v, vy, (2.23)

which is valid in any Lie algebra. The proof of (2.23) by induction goes as
follows. The case k=1,

[x, [y, e]] =0y [x 0] =[x ] 0],

is just the Jacobi identity. The left side of (2.23) can be written as

DI (RO SORTS N U I § S RO B S o

l<n<k

+ Z [x 0., .0 . [[yv, 1o . 0,]

1<n<r<k

+ Y [, b [[y0,],0,1]

t<n<k

[y v, I, 1-[0x0,, e, 1 0we, 1) (224)
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whose second and last terms cancel. Combining the first and fourth
terms of (2.24) using the Jacobi identity, the result is the left side of
the inductively assumed identity bracketed with v,, which equals

%
([x, y)oei, v, ] 1

COROLLARY 2.3. J*acts trivially on H.
Proof. This follows from (2.7), (2.16), and Proposition 2.2. ||

Thus, we obtain a representation on H of the quotient Lie algebra G/J ™.
It is clear from (2.13) that G , and J in particular, acts faithfully on H.
In order to construct a g-module we must factor H by a G-submodule X
such that J~: H — K. First note that G_, can be naturally identified with
the wedge product V A V (antisymmetric tensors in V® V).

PROPOSITION 2.4. Let W be a gy-submodule of V A V. Let K= K(W) be
the subspace of H spanned by all subspaces V® ... W®...® V® U having
one W factor. Then K is a G-submodule of H if and only if W< J _,.

Proof. K will be a G-submodule of H if and only if
g K—-K for i=—1,0,1. (2.25)

It is clear that (2.25) is true for i=0, — 1. Let

w:Z (w’l‘®w§—w§®w/l‘)€ w (2.26)
k

and
hy=v,®...0,Ow®v;,,...®Qv,,,€k, (2.27)

where v, ..,v,eV, v, €U, and let xeg,. Then from (2.15) it is easy to
see that

X he=px+0,®..0,®Y ([x, wi] -wh—[x, wi] wh)
P

@Ui+l"'vr1+l* (228)

where p, € K. The Jacobi identity in G gives

[[x, wil, wil—[[x wh], wh] =[x, [wh, w1] (2.29)

SO

X-hy=pe+0v,®... v,»®[x,z [wh, w’z"]:|®u,-+, . (2.30)
%
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Under the identification of G _, with VV A V,

[x, 3 [wt, w’z‘]] =[x, wleG =V, (2.31)

k

so K will be a G-submodule of H if and only if [x, w]=0 for all xeg,,
we W, thatis, WeJ_,. |

We consider first the special case where W=J ,=G _,,s0J _,=G_,
forall n=2 and K=7® U is the kernel of the symmetrization map

s:H— H,,, (2.32)
where (recall (2.11))
Hym=S(V)®U (2.33)
and
(v ®..QV,Qu)=(v,...0,)Qu. (2.34)

To show that J~: H— K it is enough to show that J ,: H — K because
J_, =[G ,,J.,] and K is a G-module. From (2.13) it is clear that
G ,: H— K. So in this case g=G/J is represented on the quotient space
H/K = H,,,. One can give explicit formulas for the action of g on H,,. In
particular, from (2.15) one has

x-(v,..0,@u)=3) (v,...0,...[x,v,] v,...0,)®u
1# )

+Y (v by v,)®[x, 0] u (2.35)

for xeg,.

The space S(V) is well known in physics as the symmetric Fock space,
and it occurs as a representation space for the Heisenberg algebra. It is a
special case of our construction if we set

g_ =V g, =V go€Ce,

(2.36)
[v,v*]= (v, v*)e for veV, v*¥elV*,

where {v, v*) is the natural pairing, and choose U to be a non-trivial one
dimensional g,-module. Another example involves Hermitian symmetric
pairs. In that case we have

g=g Dgodg, (2.37)
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and our construction is equivalent to the holomorphic induced represen-
tation [H]. A third example is the algebra of vector fields on an n
dimensional manifold (see, e.g., [K1]), where

g= Y B (2.38)
1

mz

If J ,#G _, one should not expect to get a representation of g in a
symmetric Fock space. Instead of S(}') we can only obtain a “weakly com-
mutative” algebra. We only consider the case, which is important for
applications, where J~ is generated as a G ideal by J .

PROPOSITION 2.5. Let
J =[G, J ,], (2.39)

and let W=J_, define K=3,,,K. , as in Proposition2.4, where
K S H_, is the sum of the subspaces VE'QW®V® ' 2QU for
0<ig<n—2. Then we have J ,-H—- K, J :H- K, g is represented on
H/K, and

HK=U®(VeU)®(VFeaVveU)/(J_,8U)
®.®H ,JK ,®... (2.40)

3. CONSTRUCTIONS OF KAC-M0OODY ALGEBRAS AND REPRESENTATIONS

Let ScZ be a non-empty finite index set, let A=[A4,],,.s be an
indecomposable symmetrizable generalized Cartan matrix, and let g=g(A4)
be the associated Kac-Moody Lie algebra. Then g has generators e, f,, 4,,
ie S, with the relations

LA, hj] =0, [e,, f,] = 5iihiv
(A, e,]=A e, LA, 1= —A,f, for i jes, (3.1)
(ade)' "*e,=0, (adf)' "f,=0 for i#}j

If S’ is a non-empty proper subset of the index set S, then the submatrix
A'=[A;];,es may be decomposable but still corresponds to a Kac-
Moody algebra g(A4’) which is the direct sum of algebras associated with
the indecomposable blocks of 4'. We assume familiarity with the classifica-
tion of the finite type Cartan matrices whose associated algebras are finite
dimensional. They are the Cartan matrices which are positive definite.
Another important class of Kac-Moody algebras is the class of affine
algebras, those whose matrices 4 are degenerate positive semidefinite with
all submatrices A" of finite type. If A is non-degenerate indefinite that each
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submatrix 4’ is decomposable into blocks of finite or affine type, then A is
of hyperbolic type and g(4) is called a hyperbolic algebra. Although there
are infinitely many rank 2 hyperbolic algebras g(A4), 4 =[; 4] with ab>4,
there are only finitely many hyperbolic algebras with rank > 3, and the
maximal rank 1s 10.

A Dynkin diagram corresponding to the Cartan matrix 4 has vertices
labeled by the elements of S with edges between the ith and jth vertices iff
A;#0. If 4 is of finite type and 4,#0 then 1< A4,4,<3, and one has a
single, double, or triple edge between the ith and jth vertices accordingly.
If A,# A, then a multiple edge is given an arrow pointing towards the ith
vertex if |4, > |A,|. If A is of affine type then 4,4, =4 is possible, so four
edges (with or without an arrow) are used. There is a vertex (maybe more
than one) in each affine diagram whose removal yields a connected
diagram of finite type. We label such a point by 0 € S, and label the rest by
1 <i< /. Dynkin diagrams for rank 2 hyperbolic algebras are given an edge
labeled by a pair of negative integers (a, b) with ab >4, but higher rank
hyperbolics have 0 < 4,4, <4 so the previous diagram scheme still works.
In each hyperbolic diagram with more than two vertices there is a vertex
whose removal yields a connected affine diagram, and we label such a
vertex by —1e€S. We can define a class of algebras, including the hyper-
bolics of rank at least three, for which representations can be constructed
by the methods of Section 2. We call A Lorentzian if its Dynkin diagram
is obtained by adjoining one vertex, labeled — 1, connected by a single edge
to one 0 point of an affine diagram.

For simplicity of exposition we suppose thatg=g(A4), A=[4,] <., </
is a Lorentzian algebra whose Dynkin diagram has no arrows (so
A4,=A,). Then the subalgebra g”" =g(A"), A" =[A4;], <. ;< generated by
e, [ h,, 1<i<|, 1s a finite-dimensional simple Lie algebra of type 4,
(!I=21), D, (I=4), or E, (6<!<8). The subalgebra g'=g(A4’), A'=
[A;]o<i <. generated by e, f, h, 0<i</ is an affine algebra of
type A ({=1), DIV (I1=4), or E'V (6</<8). We then say that the
Lorentzian algebra g is of type 4¢"" (/ = 1), D! (I >4), or E\V (6</<8).

We can give another construction [FK] of g” from A" as follows. Let Q
be a rank / lattice with Z-basis «,, .., a, and define a non-degenerate
symmetric bilinear form on Q by («,, x,> = 4,. Then Q is an even lattice
(ie., (a,a>e2Z for xe Q) and we define

A={xeQ|{a,a>=2" (3.2)
Extend the form { , ) linearly to the vector space

h*=0Q0®,C (3.3)



444 FEINGOLD, FRENKEL, AND RIES

and use it to identify h* with its dual space

h= Y Ch (3.4)
1<ig!
by
2, (h)=A,. (3.5)

There is a unique cohomology class

[ele HY(Q, {+1}) (3.6)

which can be represented by a bilinear 2-cocycle ¢ on Q satisfying
e, B)e(B, a) ' =(—1)=F w, feO. (3.7)

Then g” is the vector space

g'=h® Y Cx, (3.8)

xed

with Lie algebra brackets
[hn h,] = Oa [hs -\“1] = a(h) x:z’

0 if <o, f>=0
[x,. xpl=<elat, B) X,y if <o, f>=—1 (3.9)
ela, —o)o if <o, = -2,

for heh, a, fe 4. From (3.2), for o, fe A we have a+ fed iflf {(a, )=

—1, and a+ =0 iff {a, B> = —2. We can extend the form {, > to an

invariant non-degenerate symmetric bilinear form on all of g” by setting
<hyx,>=0,

0 f a+f#£0

ela, —a) if a+p=0 (3.10)

(X Xy = {

for heh, o, fe 4. We can choose ¢ such that
gla, —a)= —1 for aed, (3.11)

which simplifies (3.9) and (3.10). The identification of this construction
with the one given by generators and relations is then

Xo, =€, X ,=—f, h=h, 1<i<l. (3.12)

-
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With «,, ..., ;€ 4 distinguished as the simple roots of g”, let «* € 4 denote
the highest root. The fundamental weights w,, ..., w, of g” are determined
by {w;, 2,) =0, 1 <i,j<l.
We associate with g” an affine algebra
8"=¢g"@C[t,t ']®CcCd (3.13)
with Lie brackets

[(x@t", y@1"] =[x, y]®t"*"+md,, _.{x, ¥Dc,
[dx®@t"]=mx@ 1™, [c, x®1"] =0, [¢,d]=0,

(3.14)

for x, yeg", m,neZ. Let
x(m)=x®t"” (3.15)

and identify g" < g” by x =x(0). There is a unique extension of the form

{, > from g” to §” given by

{x(m), p(n) ) = <X, 2 0 _pr  X(M), ) =0, (3.16)
(x(m),d>=0, <{e,ed>=0, <(ddy=0, (e, dd=1,

yielding an invariant non-degenerate symmetric bilinear form. We can
identify §” with the subalgebra g @ Ch _, of g by

x,(0)=e,, x ,(0)=—f, h(0)=h, 1<i<y,
x L (l)y=ey, X (= 1)= —fy, c—at =hg, (3.17)
—c—d=h_,.

We take
H=h®CcpCd (3.18)

A

as a Cartan subalgebra of g”, and use the form ¢, ) to identify H with its
duat space H*. Then the root system of 8" is

A={a+nc,mcloed, neZ,0#meZ} (3.19)
and we take
Ko=c—at, a,..,0 (3.20)

as simple roots. The fundamental weights of g”, &y, @,, .., @,, are deter-
mined up to multiples of ¢ by the conditions

(b a,y=6,  0<i j<l (3.21)
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This gives
Wo=d, @;=n;d+w,, 1<ig], (3.22)

where n,=<{w;, 2% > so a* =%, ., ,na;. If we take the simple roots
of g to be ¥ = —c—d, oy, .., x, then the fundamental weights of g,
Q |, Q,, .., 82, determined uniquely by the conditions

(Q, 0,>=46,, —1<i, j<ld, (3.23)
are
Q | =—¢, Qy=d—c¢, Q,=n,d—c¢)+w, 1<ig<l (324)

From (3.1) it follows that

g=¢g ®Hog", (3.25)
where
H= ) C# (3.26)
igig/

is a Cartan subalgebra for g, and g* is spanned by vectors of the form
[ei,..e. ] nx=1, (3.27)
and g~ 18 spanned by vectors of the form
Lfos o fid m21 (3.28)

If we decompose g into g”-modules, we get the Z-grading

g= 3 & (3.29)

med

where g,=g" and g,, is the span of the vectors (3.27) if m>0, (3.28) if
m <0, having |m| occurrences of the subscript —1. Since [c¢,g8"]1=0,
[c,e.;]=—e_, and [c¢, f 1=f ,, it follows that ad ¢ acts as —m on
g..- The scalar by which ¢ acts on an irreducible §"-module is called the
level of the module.

The standard g”-modules are those irreducible g”-modules with domi-
nant integral highest weight. Recall that A=zc+ 3, ., ., m,0, is called
dominant integral when 0<m ;e Z for 0 <i<! and e C. We denote the
standard g"-module with highest weight 4 by V(A). V(w, + zc) is called an
ith fundamental module, and V(& + z¢) is called a basic module. The level
of V(Ayis {A,¢)=my+n,m +...+nm, For each standard §"-module
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V(A) one has a dual (contragredient) g”-module, V(A)*, which is the
irreducible g”-module with lowest weight — 4.

Let V= V(dy+c¢) and V* = V(d,+ ¢)*. We can identify g_, with ¥ and
g, with * so that /_, is a highest weight vector in V, and e_ is a lowest
weight vector in V'* (see [FF]). There is a unique non-degenerate invariant

A

symmetric bilinear extension of the form ¢, > from g,=g" to
B =VDE D V™, (3.30)
and it satisfies

{e_,f =1L (3.31)

The action of 4 on ¥ and V* is determined by the brackets

Lho, /o= -2\, [h_i,e_]=2e_,, (3.32)
which imply

4/ 1=/, [de J=—-e_,. (3.33)
So f_, has weight @y+c¢= —a _, and e_, has weight —y—c=a_,.

THEOREM 3.1. Let G and J be constructed as in Section 2 from (3.30).
Then G/J is isomorphic to the simple Lorentzian Kac—-Moody algebra g,
J™ =[G, J_,] is generated by [ f_,,[f_\. fo]]) and J _, is an irreducible
standard 8"-module with highest weight ¢ +2d +a*. Furthermore, J* =
{G, J,] is generated by [e |,[e_,,e,]] and J, is an irreducible lowest
weight 8"-module with lowest weight —c—2d—a™.

Proof. Tt is clear that all the defining relations (3.1) are valid in G
except

Lf [/ /od1=0,  [e_y,[e 1,e011=0. (3.34)
From [e,, f,1=0,h,, [h,e]=A,e and [k, f1= —A,f, we get

les Of 1. [f-15/6111=0  for —1<i<! (3.35)
and

[fi.le 1, [e 1.e]111=0  for —1<i<l, (3.36)

which imply that
LfnLf W felled (3.37)

481/156/2-12
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and

le_i,[e_1,e0]]€ . (3.38)

Therefore, all of the relations (3.1) are valid in G/J, which must be
isomorphic to the simple Lorentzian Kac-Moody algebra g by the
Gabber-Kac theorem [GK7] (see also [KMW, Proposition 3.1]). This
means that J~ =[G, J_,] is generated by (3.37) and J _, is an irreducible
standard g"-module with highest weight ¢ + 2d + a*. Similarly, we get that
J* =[G, J,] is generated by (3.38) and J, is an irreducible lowest weight
g”-module with lowest weight —c—2d—a™*. |

Let us now turn to the construction of modules for this Lorentzian
Kac-Moody algebra g. Let U be an irreducible standard highest weight
g”"-module with highest weight vector u, of weight A=% _, ..., m 2,
0<m,eZ, and let H be the G-module as defined in Section 2 from ¥ and
U. Let %(G) denote the universal enveloping algebra of G, and note that
H=%(G)u, is a standard cyclic G-module. Identifying J _, as a subspace
of VAV, let W=J , define the G-submodule K as in Proposition 2.5.
Then H/K is a g-module, Z-graded as in (2.40). Each graded piece of H/K
is a quotient of a finite tensor product of highest weight g”-modules, so
each f;, 0<i</, acts locally nilpotently on H/K. From (2.13) it is clear
that /_, does not act locally nilpotently. From the formula

e SN vug= —(k+ I)k—m ) f5 | u, (3.39)

which is valid in #%(G) for k>0, we see that

Umax ="' g (3.40)
is a maximal vector in H. Let

N=U(G) thpyay. (341)
Then N is a proper non-trivial G-submodule of H. Let M=K+ N.

LEMMA 3.2.  On the g-module H/M the action of f, is locally nilpotent for
—-I<igli

Proof. Since M contains K, H/M is a g-module. The only point to
prove is that f | acts locally nilpotently on H/M. In #(G) we have the
relations

fofi=ff for 1<i<! (3.42)
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and

Sifo=Uof 2L v S DS+ L0 fo)] (3.43)

Any vector in H can be written as a linear combination of vectors of the
form

h=f,Js - -f, uo for —1<i,.., i<, (3.44)

so for p sufficiently large, (3.42) and (3.43) imply that /7, -he M. |

We may now apply a result of Kac [K2, Sect. 2, Theorem 2] to show
that our construction has produced a highest weight irreducible g-module,
B(A), for arbitrary dominant integral weight A.

THEOREM 3.3. The g-module H/M is an irreducible highest weight
module with highest weight A.

Proof. Since H is a standard cyclic G-module, H/K is a standard cyclic
g-module. Therefore, H/K is a homomorphic image of a g Verma module
¥°(A) with highest weight generating vector v,. The maximal proper
submodule .# of ¥7(A) is generated by the vectors

[ty for —1<i<l (3.45)
The images of these vectors in H/K,
[P ug+ K, (3.46)

are zero for 0<i</ since U is an irreducible highest weight g”-module
with highest weight 4. Composing with the projection onto H/M =~
(H/K)/{M/K), they are all zero, so the maximal proper ideal equals the
kernel of the map onto H/M, giving the isomorphism H/M =¥7(A)/f =
B(A). 1

The Z-grading of H in (2.12) induced the grading of K and H/K in
Proposition 2.5, and induces such a grading on N, M, M/K and H/M. For
example,

=0 for Osn<m_, (3.47)
and
N*lm\|+l)=%(g”)'umaxg— V(A_(mvl + ])a'l)' (348)

We finish by giving precise descriptions of the first few graded pieces of the
irreducible g-module H/M constructed above.
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COROLLARY 34. The irreducible g-module H/M with highest weight
A=Y <., m;82; has the Z-grading

H/M =(H/M),® (H/M) ,®(H/M)_,®...
and we have (H/M),=U=V(A).
(@) If m =0 then we have

VU V(o +c)® V()

(H/M)_, = N_|  Wde+c+A)

(b) If m =1 then we have
(HM)_,=VRU=V(dy+c)® V(A)
and

Ve VU V(dg + ¢)® V(g + ¢)® V(A)

(H/M) _,= N_,®K_; V(Q2dy+20)®@ V(A)® V(2Dy+2c—ag) @ V(A)

(c) If m_, =2 then we have
(HIM) (=V@U=V(@,+c)® V(A1)
and

VRVOU _ Viddy+)® V(cdy+c)® V(A)

(H/M) ,= K , V(2 + 2¢ —ag) @ V(A)

COROLLARY 3.5. If A=m_,Q | then dim(U)=1 and in each part of
Corollary 3.4 we may replace V(u)® V(A) by V(u+ A) for any u.

We now apply the above results to the fundamental representations.

COROLLARY 3.6. Let g, be the affine subalgebra of the Lorentzian
Kac-Moody algebra g as in Theorem 3.1. Then H/M = B(Q,) for —1<i<!
is a fundamental g-module.

(a) If A=Q = —c then
(H/M)o=U=V(~c)

is a trivial 1-dimensional g,-module,

(H/M) = V()
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is a basic go-module,

(H/M) _,=
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Vigg + ¢) @ Vidd,)
V(2o + )@ V(2tg + ¢ — )

is essentially the tensor square of a basic g,-module modulo the sum of the
top symmetric and top antisymmetric irreducible components.

(b)

If A=Q,=d,—c then

(H/M)o=U=V(dy—c)

is a basic go-module,

(H/M)

—1

_ V(do+0)® Ve —c)
- V(2d,)

is essentially the tensor square of a basic g,-module modulo the top

symmetric irreducible component.
(¢) If A=Q,=d,—n,c, | <i<|, then

(H/M)y=U=V(®,— n;c)

is a fundamental g,-module,

(H/M) _,

_ V(e + )@ V(d,—n;c)
V(g +d,— (n,— 1)c)

is essentially the tensor product of a basic and a fundamental g,-module
modulo the top irreducible component.

A generating function formula for the level 2 root muitiplicities for the
hyperbolic algebra of type A"’ was given in [FF]. The same information
for the hyperbolic algebra of type E,, = E{" was given in [KMW]. Using

the same methods, we can

now give generating function formulas for the

level 2 weight multiplicities of the three fundamental modules for A!"". Such

formulas for some of the

fundamental E,;-modules would follow from

character formulas for certain E{''-modules.
Let ¢(¢)=TI1.»: {1 —¢") and define the generating functions

Z M,,|(k)q"=

k20

Z Mo(k)qk

k=20

Z Ml(k)qk=

k=0

2y -3
s ) o
2y -1

] o
2 -1

Grlnen] o
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Let g be of type A%, so /=1 and n, =1 in (3.24). As was shown in [FF],
a weight A=m_,Q_,+myQ,+m,Q, can be associated with a 2x2
symmetric matrix

L:['"'Jj’””’”' " ] (3.52)
am, my+m,

so that (A, 4> = —2det(L) and w in the Weyl group W= PGL,(Z) acts
on L by w-L=wLw', It follows that

a b
,u=|:%h ~2] (3.53)

is a level 2 weight of B(R,), i= —1,0,1, when det(u) =1, a, be Z, and b is
odd if i=1 but even otherwise.

CoroLLARY 3.7. With notation as above, the multiplicity of a level 2
weight u in a fundamental A\V-module B(R2,), is M, (det(u)—1) if i= —1,
0, but it is M (3det(u)—2) if i=1.
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