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1. Introduction

In the last few years the theory of Kac-Moody Lie algebras has drawn consider-
able attention because of its numerous connections with other topics in mathe-
matics and physics. Most of these results concern only the simplest class of infinite
dimensional Kac-Moody algebras known as the affine Lie algebras. Except for
some general results and the papers [4, 24, 35], little is known about the
hyperbolic Lie algebras, the next class of Kac-Moody algebras after the affines. In
this paper we restrict ourselves to a detailed investigation of one particular
hyperbolic Lie algebra, §, although our techniques certainly generalize. Our main
results are a construction of § and the relationship between the representation
theory of & and the theory of Siegel modular forms of genus 2. One of the
purposes of this paper is to show the richness of the algebraic structures associated
with the hyperbolic Kac-Moody algebras and their newly discovered connections
with classical mathematics. These lead us to expect even more important
discoveries in this direction.

The definition of a Kac-Moody algebra by generators and relations (see
Sect. 2) is based on an integral square matrix A, called the Cartan matrix. We will

* Research partially supported by NSF research grant MCS80-02198
** Research partially supported by NSF research grant MCS81-02534
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study the case where the Cartan matrix is

2 -2 0
A=(4)= [-2 2 -1}, (1.1)
0 -1 2

and the corresponding Dynkin diagram is

® ® o, (1.2)

The Cartan matrix 4 determines a symmetric bilinear form (-,-) on R*=Ra,
+IRa, +Ra, defined by («;, ozj)=Aij for i,je{1,2,3}. It also determines a discrete
group W, called the Weyl group, which is generated by reflections with respect to
o, for i=1,2,3. The connections with classical mathematics start from the fact that
W ~PGL,(Z), one of the most extensively investigated discrete groups. The root
lattice

Q=Zo,+Za,+Za, (1.3)
and the weight lattice
P={1eR?|(A,0)eZ for i=1,2,3} (1.4)
also have nice realizations,
0= {(z ’;) a,b, cez} (1.5)
and
a b2
P= {(b/Z . ) a,b,cel}, (1.6)
so that W acts in the usual way
w-A=win' (1.7)

for we W and A€ P. The classification of W-orbits in P can then be seen to be
equivalent to the classification of equivalence classes of integral binary quadratic
forms

F(x,y)=ax*+bxy+cy?. (1.8)

In the case of positive semidefinite forms the classification is given in terms of the
dominant integral weights P** in Sect. 2.

One of the most important results in the theory of affine Lie algebras is their
explicit realization which gives a root multiplicity formula and clarifies their
structure. In Sect. 4 we give a construction of the hyperbolic algebra & which can
be easily generalized: Let us denote by &, the affine Lie subalgebra of &

2 =2
-2 2
of &, (see [10, 17]) and let V* be the dual (contragredient) representation. Let ¢
be a one-dimensional extension of &, obtained by adjoining a certain derivation
(see Sect. 3) and let {x;|icI} be an orthonormal basis of §; with respect to the

corresponding to the Cartan matrix ( ) Let V be a basic representation
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invariant symmetric bilinear form (-,-) normalized so that (a,a,)=2 for i=1,2.
Then we define a Z-graded Lie algebra

G=...+[VEV¥]+V*+F+ VIV, V]I+..., (1.9)
where for xe &, ve V, v*e V* we have
[x,v]=x-v, [x,v¥]=x-v* (1.10)
and
[v*,v]=— ;(v*, X; U)X (1.11)
This algebra has a unique maximal graded ideal
3= ZIS,, (1.12)

and the hyperbolic algebra § is isomorphic to 6/3J.

A description of the ideal J allows us to reduce the problem of determining
root multiplicities of & to the study of weight multiplicities of some repre-
sentations of §j. The weight multiplicities of g are all one, and those of V are
known [6, 16] to be values of the classical partition function, and in fact we have

n 0
Mult(o 1) =pn+1), (1.13)
where,
Zo pmq"= [ 1—g")". (1.14)
nz n21

It can be seen that 3_,, J,, 3, are trivial, so we have complete knowledge of the
root multiplicities from those graded pieces. We are able to compute the root
multiplicities from [V, V]/3, as follows. We can show that the decomposition of
the tensor product

VRV=S(V)+A(V) (1.15)

into symmetric and antisymmetric tensors corresponds to the decomposition of
V®V into two “strings” of equivalent §,-modules [see (3.42)]. The proof of this
result uses the techniques of vertex operators studied in [8, 10]. We also show that
3,CA(V)=[V, V] is exactly one irreducible standard &g-module, and using the
outer multiplicity formula for V®V from [5] we obtain the following result. We
have

n 0
=p' 1 1.1
Mult(o 2) pP(2n+1) (1.16)
and
n 1
Mult(1 2) =p'(2n), (1.17)

where p'(n) is a modified partition function

Y pn)en= {1‘[ (l—t")'l](l—t2°+t22-t“+...) (1.18)

nz0 nz1
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[see (4.36)]. It is most remarkable that the first nonzero term beyond 1 in the
second factor on the right side of (1.18) ist t2°, so that p'(n)=p(n) for 0<n <19 but
p'(20) # p(20). Theoretically our construction of § should allow us to find all root
multiplicities by studying the weight multiplicities of certain §{-submodules in
tensor powers of V. We do not, however, have a closed formula for the multiplicity
of an arbitrary root of § other than the general formula given in [36].

A complete knowledge of the root multiplicities of § would yield a quite
remarkable identity which comes from the Weyl-Kac denominator formula for §.
We recall first that this formula for &, is the classical Jacobi triple product identity
which may be written as

JO(Z’ T)=—‘ Z (_ l)je4i:i(j+ 1/2)zq(j+ 1/2)?
Jjeiz
=2isin(2nz) [] (1—¢*")(1—g*"e*™*)(1 — g*"e™*"7), (1.19)

n1

where g=e™" for Im(t)>0 and zeC. The denominator formula for & is

Z det (g) e2miTr(gPg*~ P)3)
gePGL2(Z)

= H (1 _ e2niTr(N3))Mult(N) H (1 _ e2m’Tr(N3)) , (120)
0=<NeS»(Z) det(N)=-1
Nev(R™)

1 . ..
where P=( 3 / 2), 3= (23 Z‘), S,(Z) is the set of symmetric integral 2 x 2
172 2 Z, z,

matrices and v(R™) is the set of matrices in S,(Z) corresponding to the negative
roots of & (see Theorem 4.10). Undoubtedly this identity should have a direct
analytic proof analogous to that of the famous Jacobi identity. We believe that
such a proof would shed new light on the root multiplicities, Mult(N), perhaps
showing that they have a number-theoretical meaning connected with ideal classes
of imaginary quadratic fields.

The denominator J(z, 7) for &, trivially related to the classical Jacobi theta
function

@1(2’ 1:) =—i Z (_ l)neZni(n+ 1/2)zq(n+ 1/2)2 (121)
nek
by the formula
Jo(2,7)=10,(22,1), (1.22)
has another remarkable property besides the product expansion (1.19). If we define
J(z,t,7)=J (2, 7)™ (1.23)

then we have the following simple transformation formula for J under the

. . -1
involution 1—» —,

_ 2 4
J(z,t,t)=cr_”zJ(—z, t— E—, —),
T T

- (1.24)

where ¢ is a certain root of unity (see Corollary 5.2). Together with a
transformation formula for J under the translation t—t+ 1, this gives a formula
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. +b b . . .
for any transformation 7— g—:ﬁ where (z d)ePSLZ(Z). It is an open interesting

problem to determine the transformation properties of the denominator (1.20) of &
under the symplectic involution 3— — 3~ !. We note that together with the group
W x Q ~PGL,(Z) x Z* this involution generates the symplectic group Sp,(Z), and
the invariance of (1.20) under W x Q is apparent. The role of these involutions is
not well understood from the Lie-theoretical point of view, although some
progress in this direction has been made. Kac and Peterson in [18] indicate that
the characters of standard irreducible §§-modules are invariant with respect to
certain congruence subgroups of PSL,(Z). In Sect. 5 we study the space .#, of
weight k PSL,(Z)-invariant §-characters, and its natural subspace ;. We say
that an §§-module (resp., character) is §-dominant if its decomposition into
standard irreducible modules (resp., characters) consists only of those with highest
weights which are §-dominant. The space .4, consists of the F-dominant
characters from .#,. We show in Sect. 7 an isomorphism between .#, and the
space IMM? of genus 2 Siegel modular forms of weight k, whose dimension was
found by Igusa [13] to be

dim (MM2) = Cardinality {(a, b, c, d)e Z* | k=4a+6b+10c+12d}.  (1.25)

This fact implies that parallel to the correspondence between §-dominant
standard §g-modules and standard §-modules one has a correspondence between
&-dominant §§-characters which are PSL,(Z)-invariant and §-characters which
are Sp,(Z)-invariant. The first correspondence is canonical, two modules being in
correspondence if they have the same dominant integral highest weight, so one
would expect the second correspondence to also be canonical. Such a canonical
correspondence was known for functions of level O in the theory of Eisenstein
series, and for functions of level 1 was recently studied by Maass [30-32] and
others. In Sect. 7 we recall the Maass correspondence and give its generalization to
higher levels.

The Maass space, which is a subspace of M7, recently attracted considerable
attention in the theory of Siegel modular forms because of its connection with the
Saito-Kurokawa conjecture [2, 20, 22, 38, 43]. Our Lie-theoretical approach
allows us to generalize the Maass correspondence to level 1 characters of any
affine Lie algebra ¢" and a specifically constructed Kac-Moody algebra g
containing g". We wish to mention one example of this generalization, where the
affine algebra g" is of type C}" in the notation of Kac [16] having Dynkin diagram

Z

—r—e——» (1.26)

and where the hyperbolic algebra g" has Dynkin diagram

— o< —» . (1.27)

The Weyl group of g is isomorphic to the Klein-Fricke group ¥* which contains
as a subgroup of index 4 the Picard group PSL,(Z[i]). The semidirect product of
the Weyl group with the root lattice, extended by the symplectic involution,
generates Sp,(Z[i]). The lifting of g*-characters on level 1 which are PSL,(Z[{])-
invariant by using Hecke operators in analogy with the work of Maass provides a
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construction of Sp,(Z[i])-invariant Hermitian modular forms of genus 2. This has
already been noticed by Kojima in [21]. Generalizations of these results will
appear in subsequent publications.

We have recently received from Yoshida a preprint [42] in which he has
worked out the straightforward classification of the finite number of rank 3
hyperbolic symmetrizable Kac-Moody algebras, and noticed that the Weyl groups
of these algebras are all hyperbolic triangle groups. We had known this for some
time and mentioned this observation in our talks at the 789'" regional meeting of
the American Mathematical Society. Yoshida has also seen that the semidirect
product of the Weyl group and the root lattice will be isomorphic to a discrete
subgroup of a parabolic subgroup of Sp,(IR).

2. The Kac-Moody Algebra §

We will study the rank 3 hyperbolic Kac-Moody Lie algebra & whose Cartan
matrix is

2 -2 0
A=(4)= (-2 2 —1}. @.1)
0 -1 2

We recall (see [14] or [12]) that & is a Lie algebra with 9 generators e;, f, h,,
i=1,2,3 and the following relations:

hih1=0,[e, f1=0,h,[h,e]=Aye;, [h, fi1=—A; f;
for all i,je {1,2,3}, and 2.2)
(ade) "t te,=0=(d f)~4u*'f, for i%j.
The subalgebra h = Ch, @ Ch, @ Chy, is called a Cartan subalgebra of §. We denote
by a;, i=1,2,3, the elements in the dual space h* defined by
a(h)=A4;; for ije{l,2,3}. (2.3)

The algebra § decomposes into eigenspaces under the simultaneous adjoint
action of ). These eigenspaces of & are called root spaces and correspond to
certain elements of h* as follows. For aeh* define

& ={xe&|[h, x]=a(h)x, for all heh} 2.4)

to be the a-root space of §. Clearly °=D}. Define the root system of & to be
R={0+aeh*|F*+0}. (2.5)
Clearly §*=Ce, § %=Cf,and F=h+ Z;( & It is known that any a in R can be

written as an integral linear combination of a,, «,, ®; with all coefficients either
nonnegative or nonpositive. In the first case we say that o is a positive root and we
denote these by R*. Then R~ =—R* and R=R*UR".

It is known that & is simple [11] and has an invariant bilinear form (-, ), i.e. for
any x, y, ze &, ([x, y1, 2) =(x, [y, z]). This form is uniquely determined up to a scalar
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multiple. We choose this multiple so that (h, h;)=2fori=1,2,3. The set {a,x,, a3}
of simple roots is a basis for h*. Another canonical basis of h* consists of the

fundamental weights ,, ®,, w; defined by
wih)=46;; for ije{l,2,3}.
We define the root lattice of & to be
Q=Zoa,®ZLx,DZo,
and the weight lattice of § to be
P=Zw, ®Zw,®ZLw,.
We also define the sets
Q" =Z"0,®Z" 0, ®Z" 4,
Q_ = —Q+ ’
and
P =70, ®Z0,®Z" w,.

P** is called the set of dominant weights of &.
We identify b with h* by the isomorphism 7 determined by

nh)=a, for i=1,2,3.

Thus, b* has a bilinear form, which we continue to denote by (-,-).
We prefer to use the following basis for bh*;

* * *
=y/2, Y=oy oy -, yi=—ap—a,.

For this basis the matrix of the form is

1/2 0 0
OFy)=10 0 -1
0 -1 0
We have
0 =YY+, 0, =yi4Y3, 03=03,
and

0 =27, a==T-95,  4=y3-)3.
We also see that
O={2n,y¥+n,y5+nyy¥|n,n, neZ},
0 ={2n,y*+n,y%+nyy%eQln, 2n,+nyn,+n,<0,n, <0},
P={ny¥+n,y5+nyy%|n,n, nyeZ},
and
P** ={n,y¥+n,y} +n;y¥ePlny2n,2n, 20}.

(2.6)

2.7

(2.8)

(2.9)
(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

2.17)
(2.18)
(2.19)

(2.20)
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The Weyl group W acting on b* is generated by r |, r,, r; whose action on h* is
given by
r{a)=o;—A;0;. (2.21)

It is known that W is a Coxeter group with relations
ri=ri=ri=(r,r,)?*=(r,r,)=1. (2.22)

Therefore, W is isomorphic to the extended modular group (see [34, p. 111]),
which we think of as PGL,(Z). The even subgroup W* C W generated by r,r, and
r,ry is then isomorphic to the modular group I'=PSL,(Z). An explicit description
of the isomorphism will be given below.

The set of real roots is defined to be

Ry=W-{o, 0,05} (2.23)
and the set of imaginary roots is then
R,={axeR|a¢R;}. (2.24)
We also have positive (and negative) real and imaginary roots,
Ri=Ry,nR*, Rf=R,nR*, (2.25)
and
R*=RnQ*, Rf{=R,nQ*, Rf=R,NQ*. (2.26)

Moody has shown [35] that for hyperbolic algebras
R,={0eQ|(x,®)<0}. (2.27)
With respect to the basis (2.13) the generators of W act as follows:
ri(zyvT + 2,93 +2373) = -zt +z05+ Z3Y%
rz v+ 203+ 2373 =(—z + 22,y  + 2,08 H(—z 2+ 25)v%, (228)
raz vtz +z39%) = 2 V¥ zap5+ Z,7%.
The elements in P, Q, and W can be realized as 2 x 2 matrices. Let S,(C) denote

the complex symmetric 2 x 2 matrices and let S,(Z) denote the integral symmetric
2 x 2 matrices. We will also use

s@={(, ")

ny,ny, n3el} 2S,(Z). (2.29)

Each of these sets is invariant under the following action of PGL,(Z);
g-x=gxg' for gePGL,(Z). (2.30)

Define the map v:h*—S,(C) by

24 21/2)

Wz Y+ 2,05+ 2393 = (21/2 Z

(2.31)
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We also define a group homomorphism v: W—PGL,(Z) which is uniquely
determined by ¥(r,) =g, for i=1,2,3 where

1 0 -1 1 0 1

are generators of PGL,(Z). Also, v: W* —»PSL,(Z).

Proposition 2.1. (a) The map v defines a vector space isomorphism h*~S,(C) and
lattice isomorphisms P~ S,(Z) and Q~S,(Z) so that S,(C) has the bilinear form
. ()é)) the map v gives group isomorphisms
PGL,(Z)y~W and PSL(Z)~W™,
(c) for any Aebh*, we W we have
v(w-4)=v(w)-v(4), (2.33)
(d) the form (-,-) on S,(C) is invariant under PGL,(Z),
(©
V(R ={xeS,(Z)|detx =0},
VR, )= {(:3 :1) €S,(Z)Inyny 2ni n,20,n, 20},

1 2

W(Ry)={x€S,(Z)|detx=—1}.

Proof. Everything is straightforward except for the fact that {xeS,(Z)|detx
2
= —1} Sv(Ry). Note first that r,r,(a,) =a,, so actually we have from (2.23)

V(Ry)=PGL,(Z)-{v(,), v(a;)} . (2.34)
Any element ge PGL,(Z) may be uniquely written as
o+pf p—a
a b 2 2
g_(b d)— y+8 6=y (2.35)
2 2

where a,b,c,d€Z, ad—bc=*1, o,p,y,0€Z, ad—Py==12, a=p(mod?2) and
y=d(mod 2). Also note that

0 1\, ( 2ab ad+bc

9(1 O)g—(ad+bc 2cd )

1 0\, (a*-b> ac—bd\ af (a6 + By)/2
-"(o —l)g_(ac—bd cz—dz)—((oc6+ﬂy)/2 70 )

From (2.34) it is clear that we have

(2.36)

®a={al; o)doeror@folely )eweror,@). @
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Let N= ("1 :) €5,(Z) have det(N)=— 1. One can easily find g,,9,e PGL(Z)
n o n;
. 0 1\, . 1 0\,
such thatifn,,n,e2Z, N=g, 1 o)9v andifn ¢2Z or n,¢2Z, N=g, 0 —1)92
Definition. Let R, ={gv(a,)g'|ge PGL,(Z)} for i=1,2,3. Then we have
1 0
Rh={o(] o)dlecPoL.@} ana Ri=ri={ofy _)s1oeror @}

Proposition 2.2. Let Ne R}, i=1o0r 3, then N has exactly one presentation in the
form N=gv(a,)g" for det(g)=+1 and exactly one presentation in the form
N=gv(a;)g" for det(g)=—1.

Proof. From (2.36) one may see that if gv(a,)g’ = v(a;) then either g=1 or g =w(a,).
So from N =g, v(a,)g} =g,v(a,)g5 one has g; 'g, =1 or g5 'g, =v(a,). Either g, =g,
or else g, =g,v(x).

Definition. Let
0
Rgz{g('g 0>g'|0=i=mel,gePGL2(Z)}.
Proposition 2.3. There is a one-to-one correspondence between the set
(Quoo) x (Z—{0}) and RY.
Proof. We have that
(a b) (m 0) (a c) _ (azm acm
c dJ)\0 o/\b d) \acm cm)
where (a,c)=1, so that
a*m acm
R)=
I {(acm czm)
But QU oo is in one-to-one correspondence with {(a;c)eZ x Z|(a,c)=1} modulo
the relation (a;c)=(—a; —c). The proposition is now clear.
Definition. Let @ =Quco. For each ge@ let

2
R%(g)= {(a m acm)

acm c*m

(a,c)=1,0=¢=mel}.

a,ceZ,(a,c)= 1,q=a/c,0=i=mel}
and let

Ry(@)= {Nz (’: ‘nn)eRW|n1c2+n2a2=2nac for g=aj/c, (a, c)=1,a,cel}.
2

Since the equation of the plane tangent to the cone z,z,—z*=0 through the
point (z‘;, 23, 2% 'is jt}st 2,29 42,29 —222° =0, the definition of R,(q) has a clear
geometrical motivation.
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b
Definition. Let R(q)=Ry(q)UR}(q) for any qeQ. If g= (: d)ePGLZ(Z) and

A+bC
g=A/Ceq then define the action g-q= aftoe
. cA+dC
It is easy to see that
Ry(g-9) =9 Ry(@)=9gRy(9)g" (2.38)

Proposition 2.4. For any qeQ the set R(q) corresponds by v to a set of points in h*
which form an affine root system of type A'V.

Proof. See Sect. 3 and [23, 25] for details about the affine algebra of type A{" and
its root system. For our present purposes it suffices to know that such a root
system is of the form

{mvy o, ImeZ}o{mv,|0+meZ}, (2.39)

where v, and v, are fixed vectors in h*. From (2.36) and Proposition 2.1, and since
for g= o0 we have a=1 and c¢=0, we see that

R(c0) = {(;"1 ji)l)’mel}u{(rg g)‘O#meZ}. (2.40)

We will see later that this corresponds to the root system of the subalgebra &, of
type A" generated by o, and a,. The general result follows from the action of
PGL,(Z) on Q.

Proposition 2.5. Each element Nev(Ry,) is contained in exactly two sets Ry(q,) and
Rw(qz) Jor q,, quQ'

Proof. This follows from Proposition 2.2.

The most subtle aspect of root systems of Kac-Moody algebras is the
determination of the root multiplicities. The construction of algebra § given in
Sect. 4 provides a significant amount of such information.

In contrast to the cases of finite dimensional and affine algebras where the
union of the weights of standard representations fill up the entire weight lattice P,
for hyperbolic algebras they only fill up some positive cone which one denotes P™.

Definition. Let P* C P be defined by
W(P*)={NeSy(Z)|N20}. (2.41)

Within the set P* we will now study the orbits under the Weyl group W. This
problem was studied by Lagrange in the language of binary quadratic forms.

Lagrange considered classes of integral binary quadratic forms
F(x,y)=ax?>+bxy+cy* for a,b,ceZ (2.42)

under the action of PSL,(Z). There are finitely many classes of forms with given
discriminant D. Each Nev(P*) corresponds to a positive semi-definite form with
discriminant D 0. If det(N)=0=D it is easy to find the PSL ,(Z)-equivalent form
F,(x,y)=nx? for unique neZ*, so N is PSL,(Z)-conjugate to a unique element of
V(P* ™). To study the Weyl group orbits in P™ it is clearly sufficient to study those
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T I !
-1 -V 0 7y 1

Fig. 1. Fundamental domain for PGL,(Z)

0< Nev(P") which are primitive. One has the well-known bijection between the

set of all similarity classes of full modules in imaginary quadratic field @Q( ]/;i)
having fixed coefficient ring O, and the set of all equivalence classes of positive
definite integral primitive binary quadratic forms of discriminant D=df? <0. (See

b/2
[3] for details.) A representative module associated with N = (baz / ) can be
taken with basis / ¢

—b+ /b2 4
{1,?=w—b+ b ac}, (2.43)
2a
. . a f
where Im(y)>0. Using the action of g = y 6 €PGL,(Z) on the upper half-plane
4B it det(g)= +1
yz+90
g-z=9 '_ (2.44)
ZHB i det(g)=—1
yZ+0 J
one gets as fundamental domain
{reC|Im(y)>0, —1/2=<Re(y)=0,]y| 21} (2.45)

(see Fig. 1). These conditions applied to (2.43) give the conditions c=Za=b=0 on
N. Applying reflection r, we see that any New(P*) is PGL,(Z)-conjugate to a
unique element of v(P* ).

Proposition 2.6. We have P* =W-P** and every W-orbit in P* contains exactly
one element from P* ™.

Remark. The map T from v(P*) to the extended complex upper half-plane given by

T(a b/2)_ —b+|/b*—4ac (2.46)

b2 ¢ 2a
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is such that
T(xNx)=x-T(N) for xePGL,(Z). (2.47)

This gives a computational proof of Proposition 2.6, and has been noticed by
Yoshida [42] and used to investigate compactifications of certain quotient spaces.

3. Standard Representations and Characters of § and Affine Subalgebra &,

Let & be the space of all complex valued functions on P*. Then & is a commutative
algebra whose product is the convolution operation

(/1) ()= ;fl(l—ﬂ)fz(u)- (3.1)

Only finitely many terms in this sum are nonzero because P™ is contained in half
of a cone.
Let e*e & be the function defined for any Ae P* by

1 if u=4i
A = 3-2
W {o if A (3.2)
Then e*e* =e*** and e°=1 is the unit element in &.
Let € be the category of &-modules V such that
V=@ ) V, for dimV,<oo. (3.3)

ueP+

Here we are denoting by

V,={veVIh-v=p(h, for all heh} (3.4)
the u-weight space of V. It is easy to see that §*- V, CV, , , [recall the definition (2.4)
of §*]. It is known that the action of the generators ¢, and f; [see (2.2)], i=1,2,3
on V is locally nilpotent. Kac has shown in [16] that any &-module V in € is
completely reducible. Any irreducible module in ¢ has a dominant integral highest
weight Ae P* ", There is, in fact, a one-to-one correspondence between P** and
the collection of irreducible modules in € [15]. Thus, we label these so called
standard modules, V%

The character of any -module V in € is defined to be
X(V)= 3 dim(V,)e". (3.5)

pepP+
We usually denote X(V*) by X*. Clearly X(V)eé.
Kac has established in [15] the character formula for V* analogous to the
Weyl character formula for finite dimensional modules of finite dimensional
semisimple Lie algebras.

Theorem 3.1. (Weyl-Kac character formula). For Ae P** we have
Y det(w)er**@
) G A— 3.6
Y det(w)e™® (3.6

weW
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where g=w, +w, +w;eh* and where

+1 if weWw”

de‘(w)z{—1 if wEw?

(3.7

Let &, denote the type A{" Kac-Moody subalgebra of § with generators e, f,
h;, i=1, 2 and relations (2.2) whose Cartan matrix is therefore

2 =2
(_2 2). (3.8)

It is known that this algebra is isomorphic to a one dimensional central extension,
go =5l,(O)PCc, of
' sl,(€)=sl,(O)@C[t,t~]. (3.9

In order to overcome a problem caused by the degeneracy of the Cartan matrix
(3.8) one can consider a bigger algebra, the semidirect product of g, with the one

dimensional space spanned by the derivation d= —t%. If we let

g5 =sL,(C)@CcCd (3.10)
be that extended algebra then the bracket products are as follows:
[x®1", y®1"] =[x, y1@"* ™+ n(x, 36, _ e

[d, x®1t"] = — n(x®t"),

where x, yesl,(C), n,meZ, {x,y) =£Tr(adxady) is the Killing form on sl,(C)
normalized so that {h,h) =2, and c acts centrally.
We will identify g as a subalgebra of &, &g D&, as follows:

h@1=h,, c=h,+h,, d=h,+h,+h,, (3.12)
eR@l=e,, [Rl=f,, [Rt=e,, eQRt '=f,, (3.13)

where {e, f, h} is the usual basis of sI,(C). It is straightforward to verify the required
relations. Note that (3.12) is the basis of b, identified with the basis of h*

and (3.11)

=0y,  Yy=oa,ta,,  yy=a,+a,+o, (3.14)

by the isomorphism # in (2.12).' So the extended Cartan subalgebra b C g has dual
space (h5)* =~h*.
Let us use the following notation for elements of g :
e@t*=e(k), [@t*=f(k), ht*=h(k), (3.15)

for all keZ. The Killing form ¢-,-) on sl,(C) extends uniquely to an invariant
nondegenerate symmetric bilinear form {-,-)> on gj such that (h,h,>=2 for
1<i<3. One may easily compute that

Celk), f(=k)p=1, <h(k),h(—k)>=2, <(cdy=-1 (3.16)
and all other values of the form on pairs of vectors from basis

{e(k), f(k), h(k), c,d|ke Z}
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are zero. This follows from invariance and the fact that (x, y)> =0 whenever x is an
o root vector, y is a f§ root vector and a+ f+0. We also know that e(k) is a
(k+1)a, + ko, root vector, f(k) is a (k—1)a, + ko, root vector and h(k) is a
ko, + ka, root vector for all keZ.

From (3.16) it is easy to see that the union of the following three sets of vectors
is an orthonormal basis for g§ with respect to form (-, );

1
—(e(k k), —
{l/i(e( )+f(—k)

{%(h(k)+h(—k»,

(e(k)— f(— k)| ke Z} (3.17)
l/‘

! (h(k)—h(—k))|0<kel}, (3.18)

l/__
{l/_ l/___c+d l}E(c—d)}. (3.19)

Also, (3.19) is an orthonormal basis for b,

The results of Kac mentioned previously, e.g. classification of standard
modules and the character formula, are quite general and apply as well to §5. The
theory of representations for the algebra &, requires only the ad-hoc adjunction of
derivation d, but there appears to be some value in the consideration of &, in the
context of &. However, the condition that an element A=n y¥+n,y% +ty%eh* be
integral (respectively, dominant integral) for the algebra & means only that
n,,n,eZ (respectively, n,,n,eZ*) while ¢t may vary over C.

Fundamental weights of & are defined by 4,(h)) =9, for i=1, 2, which imposes
no condition on the y% coefficient of 4, so there is a one parameter family of such
weights. Define

h(0),

=y¥+y5+ty%, (3.20)
wy =73 +1y%, (3.21)

and
oy =ty%. (3.22)

The weights ', are the dominant weights of &§ whose standard modules are the
one dimensional trivial modules. Note that

wi=w,, wy=w, and ©}=0,. (3.23)
The root lattice of §j is
Qo={2nyF+nyy¥|n,, nyel} (3.29)
and the weight “lattice” of & is
Po={nyT+n,y5+ty¥In,,n,eZ teC}. (3.25)

The Weyl group W, of & is an infinite dihedral group with generators r, r,
whose action on h* is defined by

r{id)=A—Ah)a, for i=1,2. (3.26)
So we have
ri(n Yy +nys+ty5)=—nyt+n,y5 +ty}, (3.27)
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and
ry(nyF+nys +0y5)=2ny—n T +nyys +(n, +t—n 3. (3.28)
Note that W, fixes y%¥ so for any woeW,, ieb*, wy(A+tyy)=wy(d)+ty%. It

therefore suffices to compute the action of W, only on the span of y¥ and y%.
The translations in W, are the powers of T=r,r,. One has

Ti(n,y¥ +nyp%) =Qin, +n ¥ +n,y% +%ny +in,)y%. (3.29)

Define %, to be the category of &§-modules which decompose into a direct
sum of & weight spaces each of which is finite dimensional. Define &, to be the
algebra of complex valued functions on

Pg ={/1=n1))’f+n2))’5+ty§€P0](/L/1)§0’n2 gostgo} (330)

with convolution product. Then & Cé&,, the difference being that the y% coefficient
is allowed to vary continuously over R* for elements of &,, but must be in Z* for
those in &.

Kac [15] generalized the classical Casimir element, which can be written [8] as

—a’va
a>0

¢
Y hI+2 Y x_,x,+2h,. (3.31)
i=1

From the condition that (h,h;>=1 for 1<i=<3 we find that for §{
ha=—%hl—5h2—2h3=§h(0)—3c—2d. (3.32)

From (3.16), (3.19), (3.31), and (3.32) we see that the Casimir element of & can be
written as

C=3h(0)*—2cd+2 Y, f(—Kek)+2 Y. e(—k)f(k)

k20 k>0

+ Y. h(—k)h(k)+ h(0)—6c—4d. (3.33)

k>0

If V* is a standard irreducible §;-module with highest weight A=n,y¥+n,%
+n,y% then the Casimir element C acts on V* as a scalar which we will now
compute. From (3.12) we see that basis (y¥,y%,y%} of h*=(b§)* is dual to basis
{h(0), c,d} of h=b, so A(h(0))=n,, A(c)=n, and A(d)=n,. Since the action of C
commutes with the action of § on V7, it suffices to compute C-v; , where v} is a
highest weight vector of V*. Any element of & from a positive root space kills v},
)

C-v} =(h(0)* +h(0)— 6¢c —4d — 2cd)-v}
=(Gn?+n,—6n,—4n,—2n,n,)v;
={A+20,A)v; , (3.34)

where
0=w,;+w,+w;=yT+2y5+3y%. (3.35)

The standard §{-modules have been stratified according to their “level” by
several authors [6, 16, 23]. The level of V* for the A given above is n,. For standard
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highest weight modules this is always a nonnegative integer. The only standard
modules on level 0 are trivial one dimensional modules. Standard §§-modules
whose highest weights differ only by a multiple of y¥ =w, are isomorphic as §,-
modules, that is, they are only distinguished by the action of derivation d. Their
characters differ only by a factor of ¢'* for some ¢.

For the affine Kac-Moody algebras a certain standard module on level 1 called
the basic module plays a special role in the theory [7-9] and admits a simple
construction in many cases [25, 10, 17]. For &{ the basic module has highest
weight —a,=w)—w,, whose w, coefficient has been chosen because of its
relevance to the structure of § We will shortly discuss the construction of this
basic module whose character was first computed in [6], and whose weight
multiplicities were found to be the values of the classical partition function. We
shall denote the character of a standard §¢-module V* by y*. From [6] we have
the following character formulas: (cf. [16])

=™ (; p(n)e”“”)(Ze’"“‘*'”""*”““) (3.36)
and n20 meZ
1 =e (;0 plme") (mZZ ), (3.37)

where p is the classical partition function of elementary number theory.
We may rewrite these as

343 * ml“"f ml2}'§
Xw1:e>z+4h( Z p(n)e"“)(z ez( +2>‘ +( +2) ) (3'38)
nz0 meZ
and
xwzzev?r?( % plne™) (%, eZ) (3.39)
nz0 meZ

Using the Weyl-Kac character formula and the technique of “principal
specialization” one recovers from these formulas [6] the result of Gauss

¢(q2)2 j(2j+1)
= J , 3.40
o & (340
where
d= ] 1—q". (3.41)
n1

There are two approaches to the study of standard modules on levels greater
than 1. One approach is to restrict the basic representation to the subalgebra
slL(C)QC[t",t "]®Cc which is isomorphic to g,. The basic module is then
reducible and contains standard g, modules of level n [9]. Another approach to
the higher levels is by studying tensor products of modules from level 1 [5, 16]. We
will later require the following decomposition of the basic &§-module tensored
with itself, which can be found in [5] or [16]:

Vw‘z’—w3®ng—w3= Z (ame(m—2)aJ3V2wg+bme(m——l)wgVZw‘l’), (342)

m20
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where
Y (@x*+b, x> =[] 1+x¥71). (3.43)

m=0 izt

The elementary techniques used in [6] are able to give the characters of level 2 and
3 standard §§-modules. We will later need the following formulas:

Xz«utg =211 (( Z E(2m)t2"'>(z o2k + Day y(2k+ 1)2)

m=0 keZ
+ ( Y E(2m+1)t2m+1)(z ez"“‘t‘“‘z)], (3.44)
m20 keZ
where t?=q and the weight multiplicities are given by
Y, Em)tm= [] (1—t¥)" (1=t~ 1 =737, (3.45)
mz0 izt

and

sz‘z’:_.eZy; {( Z E(2m)t2"'>(z e2ka1t4k2)

m20 keZ

# (3, B )5 e vmas 7). (3.46)

mz=0 keZ

For brevity let us denote the basic module V=3 by V. The tensor product
(3.42) has an obvious decomposition into two “strings” of &,-isomorphic modules

Z (amq(m—Z))VZw(z’ and Z (bmq(m—l))VZw?’ (347)

mz=0 mz=0

where g=e?. There is also a natural decomposition into the symmetric tensors

SN ={v,®v,+v,®v, |v,,v,€V} (3.48)
and the antisymmetric tensors
AV)={v,®v,—v,®v, |v,,v,€V}, (3.49)

both of which are reducible gj-modules. We wish to establish
Theorem 3.2.

SV)= Y a,enDorp2et (3.50)
m20
and
AV)= Y b,em Vosy2et, (3.51)
mz0

We recall first the construction of the basic gj-module V given by Lepowsky
and Wilson [25]. Define the elements

Wk)=e@t* V24 fR¢** V2 for ke2Z+1, (3.52)
and let
h@t"2—16, ,c if ne2Z
xln)= {—e@t"" D24 f@IF U i pedZ 1. (3:53)
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Then from (3.11) one easily finds that

(A G), H'(k)]=jo i —kC for j,ke2Z+1, (3.54)
[W'(k),x(n)]=2x(n+k) for ke2Z+1 and neZ, (3.55)
and
kék,_"c if k,ne2Z
[x(k), x(n)]=1q — kI, _,c if k,ne2Z+1 (3.56)

2h(k+n) if ke2Z+1,nell.

The brackets of derivation d with these elements are easy to compute. A basis for
g consists of

{c,d,W(k),x(n)| ke2Z + 1,neZ}. (3.57)
The subalgebra
b= Y CHk)+Cc (3.58)
ke2Z+1

is called the principal Heisenberg subalgebra of gj, and the basic g§-module V is
an irreducible §’-module. One can identify V with the symmetric algebra

S=G(h(—1),h(=3),h(=9),...) (3.59)

of polynomials in {h'(—j)|je2Z* +1}, where the highest weight vector v, eV
corresponds to 1€ &. The action of h'(— k) for ke 2Z* +1 is by multiplication on

the left, that of h'(k) for ke 2Z* + 1 is by the derivation kgf(g—_kj’ and c acts as the
identity. The action of x(n) for neZ is given by a vertex operator
’ 1 Zk ’ Z_k /
X(@W,z)=—-exp| Y 2K(—k)exp|— Y —2K(k)] (3.60)
2 ke2Z* +1 k ke2Z* +1 k

in the following way. For neZ let X ,(2h’) denote the n™ homogeneous component
of X(2K', z), so that

XK, 2)= Y X, (2h)z"". (3.61)
nel
Then the operators X,(2h') are well-defined on &, satisfy the commutation
relations (3.55) and (3.56), and act on & as the operators x(n) act on V.
Now consider the tensor product V®V. We will use subscripts 1 and 2 to
indicate the first and second factor, respectively. So we will let

K (k)=h(k)®1 and Hhy(k)=1@Hh'(k) for ke2Z+1 (3.62)
whose action on v, ®v, is given by
hy(k)-(v, ®@uvy) =(H(k)-v,)®v, (3.63)

and

Ky (k)- (v, ®v,) =0, RH(K)-v,). (3.64)
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Then the action of g§ on V@V is given by the operators (k) + h),(k) for ke 2Z +1,

X, (2h})+X ,(2h}) for neZ, and c acts as the scalar 2.
We introduce the following auxiliary vertex operator on V@V,

Xt -t a=exp( % 04— 0-(-k)

ke2Z* +1
-exp(— Y ———(h' (k)—H. (k))) (3.65)
ke2Z" +1

with n'® homogeneous component X (k' — h}), so that
X(h,—hy2)= Y X, (W, —hy)z™". (3.66)
neZ

Let us denote anti-commutators by {4, B} =AB+ BA. Then direct calculations
with vertex operators show that for meZ, ne2Z + 1 we have

X, (hy —h), X, (W — b))} = =26, . (3.67)

(X (hy,— 1), X, (2H,) + X, (2h,)} =0, (3.68)
and

X, (H,—h)-(1®1)=0 for m>0. (3.69)

For example, in the proof of (3.68) one uses

(X (W, —h), Xm(2h’1)}— ( jX(h’ — W}, 2)X (2K, w)z"" dz

jX(Zh’l,w)X h,—h,z)z" 1dz) " Ldw,

o (3.70)
where r<r,<R and C, is a fixed circle of radius r,. Elementary operations then
give

1
2_7z_lcj 2X (W, + by, ww ™~ ldw=2X, , (K, +h)), (3.71)
and by symmetry we have
{X, (0, —h),X,2h)} =2X, , (W +1)). (3.72)

These give the result. Details concerning vertex operators can be found in [8, 10].
Let QCV®V be the subspace of highest weight vectors for g§. So Q is killed by
the space of positive root vectors from gf which is spanned by

{x(n), (k)I0<neZ,0<ke2Z+1}. (3.73)
In S®E this corresponds to the space of tensors killed by
{X,(2h)+X ,(2K,), (k) + W, (k)0 <neZ,0<ke2Z+1}. (3.74)
From (3.42) we have the character
Q=Y (a,em Dos+203 4 p gm= o+ 20t) (3.75)

mz20
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where the coefficients are given by (3.43). Let ch(:) denote the principally
specialized character of any gj-module, that is, the result of setting e *' =y=e¢~*
in the character. Then we have

ch(@Q)=e 2 [ (14+u®"1). (3.76)

jz1
Consider the set of vectors
X g oWy =R)X (B =R X 5, (B —Hh)-(1®1), (3.77)

where n, >n,>...>n, 20. Using (3.67), (3.68), and (3.69) it is easy to prove that
these vectors are linearly independent and are killed by X ,(2h})+X,(2h}) for
0<neZ. If we show that they are also killed by & (k) + h),(k) for 0<ke2Z +1 then
(3.76) shows that they are a basis for Q. It is clear from (3.65) that h(k)+h5(k)
and X,(h} —h}) commute. Thus. h\(k)+h5(k) applied to (3.77) will give 0 when
0<ke2Z+1.

Note that the vector in (3.77) is symmetric if it is unchanged when k| —h), is
replaced by i, — |, and antisymmetric if the sign reverses. Because the subscripts
are odd we see that the vector is symmetric when k is even and antisymmetric
when k is odd.

Consider the element x(0)=h®1 — ¢ of the Cartan subalgebra of g5, whose
action on V@V is given by the operator X ,(2h)+X(2h%). If ve V has weight
w$ —mw, for some m then

x(0)-v=13v, (3.78)
but if ve V has weight @) —mw, then
x(0)-v=—3v. (3.79)

Thus, for any vector veQ of the form (3.77), either v is of weight 2w? —mw, for
some meZ and

(X o(2H,) +X o2h,) v =0, (3.80)
or else v is of weight 20} —mw, and
(X o(2H)) +X o(2hy) - v=—v. (3.81)

But (3.68) with m =0 implies that in the first case k is odd and in the second case k
is even because 1®1 has weight 2w)—w,. This completes the proof of
Theorem 3.2.

Remark. The above result is closely related to Theorem 1.6 of [9] for the case when
n=m=2.

Note that Theorem 3.2 along with (3.43)+3.46) allow one to easily compute the
characters of the symmetric and antisymmetric parts of the tensor product V®V.
Using (3.40) and (3.41) it is easy to obtain the principally specialized characters
ch(S(V)) and ch(A(V)).

Corollary 3.3. We have the principally specialized characters

527 EM 2j-1 21
ch(S(V))=e?" W LQ(H“ )+j];[1(1 u )] (3.82)
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and

¥t P(u*) 2j-1 2j-1
ch(4(V))=e?"— [,H (+u2 Y~ [T (1 —u? )}. (3.83)
2 ¢ [jz1 iz1
From (3.34) we have the scalar by which the Casimir element C acts on an
irreducible standard module V*. Let us consider the two “strings” of modules in
(3.42). If A=2y% +nyy¥ =20 +n,w, then (3.34) says

C-v,=(—12—8n,)u, (3.84)
for any v,e V2, while if =2y%+2y% +n,y¥ =20+ n,w, then
C-v,=—8(ny+1)v,. (3.89)

In the first case, since n, € Z, the scalar is never zero, but in the second case it is zero
if and only if n; = —1, that is, when A= —2a, —«,. The coefficient in (3.42) which
corresponds to this A is b, =1, so there is a unique irreducible component of V@V
on which C acts as zero.

Corollary 3.4. In the tensor product V@V of the basic module of &g with itself, the
subspace of vectors killed by the Casimir element C forms an irreducible standard
module with highest weight 20— w,.

For reasons which will not be apparent until later we would like to compute
the principally specialized character of the antisymmetric “string” A(V) with the
first standard module (the one referred to in Corollary 3.4) removed.

Corollary 3.5. The principally specialized character of

( Y bug"” ‘) vl (3.86)
m21
where the coefficients b,, are given by (3.43), is
-4 4
e271L¢(u )L 1+ui—1)— 1—u?~ 1) —2ul. 3.87
3 6w -1;11( ) jl;[l( ) (3.87)

We now describe how characters in & can be viewed as functions of three
complex variables and their domain of definition.

With respect to the bilinear form (-, -) on b* the basis of h* dual to basis (2.13)
is

V=A .  Pp=ay 0. P3=0 4o, oy, (3.88)
If we write
z=2z,y,+2,9,+2;7; (3.89)
then for
A=nyT+n,y5+nyy5€P (3.90)
we have

A 2)=nz, +n,z,+nyz;. (3.91)
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For each e P* we make e*e & a function of z,, z,, z, by defining
61(21,22, 23)___e2ni(2,z)=e2m‘(mz; +n2z2 +n3z3) . (392)

For any character X= ) a(1)e*e& we define
AeP+

X (24,29 25)= Y. a(d)eX(zy,2,,2,) (3.93)

AePt

for z;=x;+ir;eC satisfying the conditions V,V3> 13, v,.v3>0. The function
X(z2)=X(z,,2,,25) is defined on

D={z=2z,7,+2,7,+237;€b¥|z;=x;+iy, y,y, > y3,y,>0}. (3.94)
Then
-z, z
v(D)={3=( i 2 ——lz )GSZ((E)|Im(zj)=yj,y2y3>yf,y2>0}. (3.95)
1 3

From our point of view this is natural because v induces a form on S,(C) such that
(VA v(@)=n,z, +n,z,+nyz,. (3.96)

It is more traditional, however, in the theory of Siegel modular forms (see [1]) to
consider the set v(P*) as we have done, but to use instead of v(D) the set

V(D)= {3: Cf“ zl) eSZ((L‘)IIm(S)>0}, (3.97)
1 2
where 1 denotes the “cannonical involution”
a by [(—-d ¢
= 3.98
=032 (359
which satisfies x'y'= —(xy)' and which may be realized in b* as —Ir,r,. The set

given in (3.97) is called the Siegel domain (or Siegel upper half-plane) H, of genus
2. It is standard in the theory of Siegel modular forms to consider functions on H,
which can be written as

Y. A(N)e2m TN (3.99)
N20
for Nev(P"), 3ev(D)'=H, and where
Tr(NJ)=nz, +n,z,+n,z;. (3.100)

This traditional use of the trace appears to obscure the indefinite bilinear form on
S,(C) which from our point of view naturally gives rise to the form
n,z, +n,z,+nyz, and gives a connection between the theory of Kac-Moody
algebras and that of Siegel modular forms.

In order to work in the traditional domain H, only minor adjustments are

needed. Because (gxg") = g'x(g") . (3.101)
for ge PGL ,(Z) the action of PGL,(Z) on x’e H, is given by
g-x'=¢'x"(g'). (3.102)
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4. The Construction of §

We shall now show how the algebra & can be constructed from the subalgebra &,
its basic module V=V~ and the dual contragredient module V*. This con-
struction, inspired by the work of Kantor [19], gives § as a Z-graded algebra

e, FE 4.1)

where §_ , ~V and &, ® V*, whose weight multiplicities were shown in [6] to be
values of the classical partition function p.

Let V=V®"“=V"% be the basic gj-module with highest weight vector v,
and let V* be the dual space of linear functionals on V. We will write the value of
the functional v*e V* on ve V as {(v*|v). The contragredient action of xe g on v*
is determined by

{x-v¥v) = —<v¥|x-v) 4.2)
which implies that
[x,y]-v*=x-(y-v*)—y-(x-v¥) (4.3)
for x,yegg, so V* is a gf-module. We will define v*-x=—x-v* so that
{v*-x[v) ={(v¥|x-v) may be simply written {v*xv)>. Then V* is an irreducible
lowest weight g§-module with lowest weight vector v§ of weight a;. One has

e, 0,=0,e,-v,=0,
hy-vy=0,h, vy=04,hy vy=—20,, (4.4)
J100=0, f5-(f,-v9)=0,

and
Ji-05=0, f,-v5=0,
hy-v5=0,h,-vg=—vg, hy-vg =205, (4.5)
e, v5=0,e,-(e, v3)=0.

Define a map ¢ : V*xV —g§ by
d*v)=— Y {v*xdx, (4.6)

iel

where {x i€ I} is an orthonormal basis for gg with respect to the form -, ->. It is
clear that only finitely many terms in this sum are nonzero for any particular pair
(v*,v), and that the definition of ¢ is independent of choice of orthonormal basis.

Proposition 4.1. For any xegj, veV, v¥e V* we have
[x, ¢(v*, v)]=(x - v*,0)+ P(v*, x-v).
Proof. Let [x,x;]= ). Cfx, where {x[ieI} is an orthonormal basis for g§. The
kel

invariance of the form, {[x,, x;), x> =<x; [x; x, 1), says Cf.‘j= Cj.k. So we have
[xj’ ¢(U*, U)] = Z <U*xil)> [xj’ xi]
iel

=— Y ¥ *xp) Chix, = — Y Y Corx) Clx;.

iel kel iel kel
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On the other side we have

Blx, 0%, 0) + D%, ;)= — Y. Cxyo 0¥l o> x— T <o xfx; 0D,

iel iel

= = Y o x 0 x= — X Y ooy Clix,.

iel iel kel
We now define a Z-graded Lie algebra
G=6(g, V=) 6,, 4.7

neZ

where ©, =g, _, =V, &, =V* and where *= ) 6 and 6 = ) 6, are
nz1 ns—1

the free Lie algebras generated by &, and &_,, respectively. So for n=1, 6,

(respectively, ®_,) is the space spanned by all brackets of n vectors from &,

(respectively, ®_,). The Lie brackets between ®, and &_, for k=1, />1 are

defined inductively, that is,

[4,[B,C]]1=[[A4, B],C]+[B,[4,C]] (4.8)

for Ae®,, [B,C]le®_,, B, Ce®~, and similarly for k>1, £=1. The brackets
between & and ®_, are given by

[v*, v]=¢(@*,v), (4.9)
and the brackets between ®, and ®,(® _,) are given by the gj-module action,
[x,v]=x-v and [x,v*¥]=x-v*. (4.10)

Proposition 4.1 shows that the Jacobi identity

[x, [v*, v]] =[x, 0*], o]+ [v*, [x, v]] (4.11)

holds for all xe®,, v*e®,, ve®_,. Note that ®, (respectively, ®_,) and the
exterior (wedge) product V* A V* (respectively, VA V) are isomorphic as
gg-modules. The correspondence is just

[vF, 03] < vF Av% (respectively, [v,,v,] < v, AD,). (4.12)
Define the subspaces (cf. [19])
3 ={xe® [y, [V [Vi-1-x]...]11=0 forall y,e®_,} (4.13)
and
3, ={xe®_,|[y,.[ys s [V -x]...11=0 forall y,e® } (4.14)
for k> 1. Let
S+=kzl 3[,3"=kzl 3, and JI=3"+3. (4.15)
Proposition 4.2. 3%, 37, and J are ideals of ©.
Proof. Let xeJ;" for k> 1. If ye ®_, then it is obvious that [x,y]eJ,_ . If ye &,

we wish to show that [x,y]e 3/, |, that is, [z,, [z,,...[z [x,¥]]...]1=0 for all
z;€ ®_,. Written out using the Jacobi identity this expression is a summation of
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terms of the form [[z,, [z,,...[z,x]...1], [2;41> (2145 ---[2,¥]-..]J]]. But since
[z, y1€®y, (241> [2i1 4 ---[20¥]...]1€®,_;_,, which may be distributed back
into [z,, [z,,...[2;x]...]] to yield a summation Y [w,, [w,,...[w,_,,x]...]]=0
since w;€ ® _ . The same argument shows that if ye ®, then [x, y]€ 3, . Since 6,
®,, and & _, generate ®, 3* is an ideal of . The argument for I~ is symmetrical
and so =3 +3J" is also an ideal of 6.

Define the Z-graded Lie algebra

6=6(,1)=6/3=6"/3 +6,+6*/3I* (4.16)

to be the canonical Z-graded Lie algebra associated with gg and V. While our
primary purpose is to show that G(g¢, V)~ § it should be noted that there is no
difficulty in generalizing the above construction to give (g, V,) for V, the basic
module of any affine Kac-Moody algebra g". The affine algebra g" is constructed
from a finite dimensional simple Lie algebra g by the addition of a new simple root
op=—a to {a,,...,a,}, where & is the highest root of g. Then we may construct
from g a Kac-Moody algebra g" by the addition of a new simple root a_, to
{ag,ay, ..., 2} such that a_, is connected only to a, by just one line in the Dynkin
diagram. The Cartan subalgebra h"Cg" will then be identified with the extended
Cartan subalgebra h*Cg* and "~ G (g™, Vo)

The simplest example of this construction is the algebra & of type A7, which we
studied first because of its Weyl group. The next cases one might consider are A}
and B}, whose Weyl groups are also quite interesting. The Weyl group of B, for
example, is isomorphic to the Klein-Fricke group ¥* (in Magnus’ notation [34])
which contains the Picard group ¥, =PSL,(Z[i]) as a subgroup of index 4.

The algebra § decomposes into §g-modules

A A E T HE (4.17)
where for n20, §, (respectively, &_,) is the space spanned by all brackets
involving exactly n e;’s (respectively, f,’s).

Proposition 4.3. We may identify 5=6,, F_,=6_,, and F, =6, in G(gs, V) so
that v,e V=0_, corresponds to f,, vieV*=0, corresponds to e,, for veV and
v¥*eV* the bracket [v*,v] corresponds to ¢(v*,v), and gy-module isomorphism
T +F+F, RV +a5+V* respects those Lie brackets which stay within these
graded pieces, provided that {v§lv,>=1.

Proof. From (2.2) we recall that

[e,.f31=0, [e,f3]1=0,
[h.f31=0,  [hyfi]=fs, [hsf31=—-2f;, (4.18)
[fl’f3]=0s [fz[fz’fs]]=0,

and
[f1,e31=0, [f,,e31=0,
[h,e5]1=0, [hye]=—e;, [hy,e5]=2e,, 4.19)
[61,83]=0, [82[62,83]]=0.
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It is easy to see that &_, (respectively, &,) is generated as &j-module by highest
(respectively, lowest) weight vector f, (respectively, e;) of weight —a, (respec-
tively, a3), so F_, =V(F, =V*).
We have that h,=[e,, f,], which should correspond to
D, v0) = — Y VXV X;
iel

where {x;ie I} is any orthonormal basis of g§. If we use the basis (3.17)~3.19) then
the only nonzero terms correspond to the basis vectors

L(c-—d).

%

l/—lr.i(c+d) and

We have from (4.4) and (3.12) that

$(e5,00)= — <v3 ( ff_—dz) ”°> ( 16/%) B <”3 (%) "°> (%)

=g yd + {vgdvg e

={vglvor(d—c)

={vglve>hs;,
so the correspondence holds provided that {v§|v,)> =1. For arbitrary v*€ V* and
ve V we may assume that v*=vg-x; and v=x, v, for x;, x, basis vectors from an
orthonormal basis {x,ji€ I} of g5. Then [[e;, x;], [x,,f;]1] should correspond to
dOF - X, X, v5) = PV, X (X v)) — [x, P(v§, X, v)] by Proposition 4.1. But from
the Jacobi identity we have

[[93’ xj], [xk, f3]] = [33, [xp [Xk, f3]]] - [xj, [83, [Xk, f3]]] s

which shows that the correspondence holds.

Proposition 4.4. The restriction of the invariant form (-, ) of §to F_,+ &+ &,
coincides with the invariant form {-,-) on g¢ and the pairing {-|-> of V* and V,
provided that {v§lvy>=1.

Proof. We see that (e,,f;)=3([hs, €51, f3) =3(hs, [es,f31) =3(h;, hy) =1 agrees with
(vglvey =1. If x;, x;€ 95 are from an orthonormal basis of g5 we must show that
([x; e3).0x ), f31)=<x;  v§lx; v . From definition (4.6) we have

—<P@*, 0), x> = v*x,0) (4.20)

for any v*e V*, ve V. From (3.12) and (3.16) it can be seen that the restriction of
form (-,-) to & coincides with the form (-,-) on gj. By invariance we have
([xi €31, [xj, 31 =(x;, [es, [xj’f3]]) =<{x;, d’(vngvo» since [e3[xj,f3]]e go- But
from (4.20) we have (x;, ¢p(vgxvy)> = — vgx|x ;00> = {x; Vg |x; vy ).

In order to see that F~ G(gg, V') we must study more closely the ideal 37 . By
definition

32_={Z[vﬁ,v§]€®_z|2[v*,[v'{,v’;]]:O for all U*EV*=@1}
k x

=Y [v*, 1% ]eG_ CoX, [k, [vh, 411> =0 forall o}, vieV*=6,
k 1°72 2k 1 2 1°72
(4.21)
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since ¥ and V* are dual. One has ) [v%,v4]e3; if and only if for all v},v}e V*
k

0= ‘k[, (Cvt, [[v3, V51, 0510 + <o, [}, [v3,0311))

= ; (<UT’ SR ETH >xi'”’§> + <UT, ) <U§xi”‘5>xi'v’;>)

iel iel
= Z Z (<fol-vli> <U:xiv§> - <U’fxiv'§> <U;x.‘v‘; >), 4.22)
k iel

where {x;JicI} is any orthonormal basis of gg.
Define a bilinear pairing of ®_, with ®, as follows. For any v,,v,e V=06 _,
and any v}, 03e V*=6 let

[et, v3]. (o4, 01> =Cofley > {odley) — Cofloy) <o3ley ) (4.23)

Then each element of ®, defines a linear functional on & _, and each element of
®_, defines a linear functional on &,. Note that

Lok, v%], [x 04, x;0,1) =<0Fx; 0, ) V3x0, ) — oTxw, ) v3x, > (4.24)
so if [x. 0%, x,-v%]=0 then Y[v*,1%]€J;. To show the converse, supposing
- = i Y1 Y2 1°Y2 2
that
¥ X [xp o, x ] #0 (4.25)

k iel

one may use dual bases of ¥ and V* to find elements v¥,, v%,,e V* such that

<Z [0F U3l 2 0 [ 4, X 'v’§]>=i=0. (4.26)
m k iel
We have established
Lemma 4.5. If %, v4eV=G6_, and {xJiel} is any orthonormal basis of ® =g,
then Y [v%,v51€3; if and only if 0= Y [x;-v%, x;-vh].

k

k iel

Corollary 4.6. We have [v,, [v,,f,11€ 35 .

Proof. We must show 0= Y [x, v, X;[00.f,]]. Using the orthonormal basis
iel
(3.17)~3.19) and the formulas (4.4) we obtain after regrouping

2 (Le(=k)-vo,f (k) [v°.f,11 + [ (= k)-vo, e(k)- [0, f,]]

0 <keZ
+[h(— k) vo, h(k)- [v,f,11) — [c-vg, d- [0, f,11— [d- vy, ¢ [0, f,]1].
Since ‘
c: [Uo,fz] =[c Uo’fz] + [vo» [sz]:l = [Uo’fz]

and

d-[vo.f,1=[d"vo,/,]1+ [0y, [d.£,11=0
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the last two terms equal [v, [v,,f,]]. We have

JK)-[vo.f2] =[S (K) 0o, 1,1+ [vo, L1 (k). 1,11
=0+ [vg, — h(k—1)+ké,_ ]

and

e(k)-[vo,fo] =[e(k)-vo, f,1+ [vo, Le(k), 1,11
=0+ [0, [e(k), e(—1)]]1=0

and

h(k)- [vo,f51 = [h(k) 0o, f,1 + [vo, [h(K),f,1]
=0+ [v,,2e(k—1)]=0 for k>0.

We finally obtain
[e(—1)-vg. [Vg. —HO)+ T+ [vo. [Vo. L11=T 1200, — o]+ [vg. [Vo. f,13=0.
Theorem 4.7. =~ G(gS, V).

Proof. From Corollary 4.6 we have that [v,, [v,,f,]1€3; and from the symmetry
between J; and 3; we also have that [v}, [v§,e,]1€3;. This shows that all of
relations (2.2) hold in ®(g§, V), so by the simplicity of § we have the isomorphism.

We would like to use Theorem 4.7 to say more about the root multiplicities of
&. It is sufficient to understand the negative roots a = —n o, —n,a, —n,o,, whose
root space " is contained in §_, . Recalling the notation of Proposition 2.1, we
G Z‘) €5,(Z) and say that a is on level my= —n,.

1 3
From Proposition 2.1 we know that « is real if and only if det(v(a)) = — 1, in which

case its multiplicity is 1. Any root § W-conjugate to an a on level O also has
multiplicity 1. Aside from the real roots, any such root § is on the cone det(v(f))
=0. Because the ideal 3 has trivial intersection with ®, and ®_, we have &, = V*
with lowest weight o, and §_, =~V with highest weight —a,. Thus, we have the
following

associate root a with v(a)= (

Corollary 4.8. Any root B W-conjugate to an a on level +1 has multiplicity
p(det(v(B)) + 1) where p denotes the classical partition function.

We would like to obtain a closed formula for the multiplicities of level +2
roots. First we will show that 3; is the irreducible standard gg-module with
highest weight vector [v,, [v,,f,]] of weight 2w} — w, = — 2a, —a,. Suppose that

v=Y [ o7]e6_, 4.27)
m=1
is a highest weight vector for g, of weight A=n,y}¥+n,y} +n,y%,so n,=2 and n,

=0 or n, =2. Using the orthonormal basis (3.17)~3.19) and the result of Lemma
4.5 one may write out an expression E(v) such that ve 3; if and only if E(v)=0. If
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one uses (3.33) to write out C-v one obtains

r r

C-v= Zl [C-v™, v+ Zl [vT, C-v7]+2E(v). (4.28)

m= m=

Thus we have ve 3, if and only if

C-v= Y ([C-v},v5]+[v],C-v3]). (4.29)
m=1
Since v],v5€ V™ * and —ay=y%—y% the scalar by which C acts on v} and 7 is
given by (3.34) to be zero. So ve3J; if and only if C-v=0. From (3.84) and (3.85)
this happens if and only if A=2y%+2y% —y¥=2w? — w, = — 20, —t,, 50 this is the
only highest weight of a gj-module in 3. Corollary 4.6 shows that
[vo, [vo.£,11€3; is a vector of that weight.
We identify G_, with the wedge product VAV and with the antisymmetric
tensors A(V) in V@V. This is quite natural since v, Av,= —v, Av, and the action
of xe & on v, Av, is given by

X (v AvY)=(x-v) AV, +0, AlX-D,). (4.30)

If v,,v,€®_, =V then [v,,v,] corresponds to v; Av, and the Jacobi identity

[x, [vy, 0,11 =[x, 0,1, 0,1+ [vy, [x,0,1] (4.31)
corresponds to (4.30). The correspondence with A(V) is given by
v, AV, & 1, QU,— 0,0, (4.32)

which is clearly a gg-module isomorphism.
Therefore, §_,~6®_,=6_,/3; is just A(V) with the first standard
module removed (see Corollary 3.5). If we denote the root multiplicity of « by

M(v(@)=M (Zz m‘) then the character of §_, is

1 M3

2y* m 0 2m 2kay 14k2
i PRI ey

+( y M(m 1) f2m= 1)(2 Q2K+ Dy 2k + 1)2> , (4.33)
m20 1 2 keZ
where t?=gq. The principal specialization of this character is
s p(u)? -

ch(§_,)=e*" Mm—Du" 1, 4.34

hB-a)=e g L, @39
where we have written more briefly

m 0 m 1
M(2m)--M(0 2) and M(Q2m-— 1)-M(1 2) . (4.35)

Together with Corollary 3.5 this gives us the root multiplicities on the second level.
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Corollary 4.9. We have

2 -3
;0 Mn—u"= 3(%)(—;‘3(37)“—2—[’[2]1 (1+u?~1— ,l;ll (1—u?i- 1)—2u]

= [ Y p(n)u"]LH (1—u‘“‘*2)]

nz0 i1

u—3
._[n (1+u2i=1)— H(l—u“")—zu]

2 ljzt izt
= [Z p(n)u"][l—u2°+u22—u24+u26—-2u28+2u3°——2u32+...].

: (4.36)

It is quite remarkable that the first nonzero term beyond 1 in the above
expansion is u2°. For that reason we have M(n— 1)=p(n) for 0<n <19, but M(19)
= p(20)— p(0).

We were led to our work on the root multiplicities of § by computer generated
data given to us by Moody. His program, based on the multiplicity formula in
[36], gave data consistent with the formula

dim(&*) = p(det(N)+1), (4.37)

where v(x) = Ne§,(Z) from Sect. 2. This formula fails, however, for most roots not
Weyl conjugate to roots from §_, + &+ &,. A program which we developed
computed multiplicities of some roots from &,, &, and &, The smallest
counterexample to (4.37) is when a=11a, +12a, +2a,, corresponding to M(19),
for which dim(%*) =626 instead of p(20)=627. We suspect that the root multipli-
cities of § have some interesting number-theoretical meaning connected with ideal
classes of imaginary quadratic fields. It is interesting to note that the roots « in
&_,+8&+&, for which (4.37) holds correspond under v to binary forms
associated with principal ideals.

Root multiplicities are also significant because they occur in the Weyl-Kac
denominator formula for .

Theorem 4.10. The Weyl-Kac denominator formula for §& is

Z det(g)ez"i Tr(gPg'3)
gePGL2(Z)

=e21riTr(P3) I_I (1 _ e21:iTr(N3))Mult(N) l_[ (1 _ e2niTr(N3)) ,

0 = NeS2(Z) Nev(Rw)
3 12 Z, Z
where P=v(g)=(1/2 é ),3=(23 Z‘)
1 22
n

WRy)= {N = (Z-"

" )ESZ(Z)InZns—nf= —1,n,Sn,+n,, 0§n2+n3,0§n2}.
1 2

Proof. The Weyl-Kac denominator formula generally is

Y det(w)e*e~¢= [] (1—e)™

weW aeR~
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where m, is the dimension of the a root space. We have written this out for algebra
& as a function on the Siegel domain H, using the results of Sects. 2 and 3.

The exponents Mult(N) are the only difficult part of this identity since we have
not given them all explicitly. They are, in fact, determined by the form of the
identity, and Moody and Berman [36] have shown in general how to obtain a
formula for root multiplicities from the denominator formula. Since our formula
involves a summation over PGL,(Z) it may be of some interest to analysts. We
challenge an analyst to prove this identity without the theory of Kac-Moody Lie
algebras, or to shed more light on the meaning of the exponents Mult(N).

S. Theta Series and the Space of SL,(Z)-Invariant §g-Characters
The Weyl-Kac character formula for & may be written as

Y. det(w)e e

1 weWg
= . 1
x Y. det(w)e* D)

weWo

where g, = 0J + 9. We will use the notation y* for the standard &;-character with
dominant highest weight 4 to distinguish it from the standard §-character X*. For
such 4, y*e &,. The dominant weights of ¥ are denoted by

Pyt ={nyr+n,yt+ty¥teR*, n;,n,eZ, ny2n, 20}. (5.2)
The Weyl group W, decomposes into two cosets,

+ if;
W = {(ryry)lieZ} (53)
and
Wy ={(r,r,)rlieZ}, (5.9)
the even and odd elements, respectively. So we have
z det(w)e‘""" yT+nayd) Z (eT‘(m yinayd) _ pTH=niyi+ nzy'z‘))
weWo ieZ
= Z e(2im2+n)yT+nayi+iing + )yl
ieZ
_ Z e(2inz—n1)y?+nzv5+i(inz—ru)y?. (5.5)
ieZ
Define the following formal theta series,

0, =c"t Y ermittims (5.6)
JjeZ+ (n/2m)

for m>0 and neR. If 0<meZ and neZ then O, ,e&. Then one sees that (5.5)
equals '

-},
e(fﬂ) ) 2] (5.7)

ny,n2 —m,nz)'

Since
/1=m1w(1) +m2wg =my} +(m; +my)y; (5.8)
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and
. Atoo=(m, +1)y}+(m, +m,+2)y% (5.9
we have
(my+1)2 1
x’-=e_ 4(m1+m1+2)_§)y5(@m+1,m+Mz+2—@-m—l,m+mz+2)' (5.10)

(@1,2‘@—1,2)

As was shown in Sect. 3, we may consider the formal theta series to be functions of
three complex variables. Then we obtain from (3.92) and (5.6)

o) (Zl’ Z,, 23) = g2nimz2 ehniimzi+ 2mij2mz3 (5 11)
n,m . .

JjeZ+ (n/2m)
Lemma 5.1. We have

1

2
2nim zz——)
e i 2mi(— 2jm(—z1/23)+ j2m(~ 1/23)),, 2nijn
AL L S
—2imz3 1 z
JEZm
1 m -z 22 —1
_ z o) ( 1 z e )e—nint/m
== tm » 22 ) .
[/ —2imzy ¢=-m-1) Z3 Z3 23

Proof. We use the Poisson summation formula which says that if f(x) is a
continous function of a real variable x and if

J)=[e 2™ f(x)dx (5.12)
R
then
Yf)=Y f(n). (5.13)
nel neZ
If we define
f(X) — e4m’mxz1 + 2ni(mx2 + nx)z3 (5 14)
for xelR then we find from (5.11) that
@n, m(zl’ 0’ 23) = eZninzl + 2mi(n2/4m)z3 Z f(l) . (515)
Jez

If we let xy=(—y+2mz, +nz,)/(2mz,) then

Jlymemainssd [ grimsite 307 (5.16)

_ 1 o~ 2mimz3x} (5.17)

|/ —2imz,
jl;e"""zdu = |/(n/p).

After substitution of the expression for x, into (5.17) and some algebraic
manipulation, the first part of the lemma can be obtained.

since
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For the second part, note that

Z3 Z3 23
=eZm’m(zz—z¥/23) e41n'km(—z;/zg)ﬂ- 2nik2m(— 1/z3) (518)
keZ—(¢/2m)
and that
Lz- () {z+ /} (5.19)
2m ¢=—-(m-1) 2m ’ '

So using the first part we can write

0, m(z1,2,5,25)

e2nim(z;—z%/23) m—1
— e 4nimk(—z1/z3) + 2nimk2(— 1/z3)e21|:ink

. )
V —2imzy ¢="mkez+@/2m
By changing k to —k and by using (5.18) we obtain the result.

Definition. Let J(zy,2,,23) =0 ,(2,2,,23)— O _; ,(zy,2,,23).

—i -z, 2 -1
Corollary 5.2. J(z,,2,,2;)= ——= J|—, 2,— —, —|.
V =iz, Z3 Z3 I3
Remark. Looijenga [26] has introduced the formal theta series for arbitrary affine
Kac-Moody algebras and proved the analog of Corollary 5.2 in that generality.

Definition. If A=m, @ +m,w}+myy¥=my*+(m, +m,)y%+msy*eh* then we
call 4 a weight of level m, +m,.

If Ve ¥ is an §-module then it is also an §-module (¥ C%,) and decomposes
into the direct sum of standard §-modules, each of which has character y*
=egmriymottmale o of level M=m, +m, 0.

Since each such 4 is in P* we can write

Xn= Y Y ymied +maod Y A(m,,m,,my)e™, (5.20)
M20 my+my;=M mieZ*
my,myeZ*

where A(m,,m,,m,) is the multiplicity of x* in X(V).

Definition. Let the level of §-module Ve ¥ be the least positive integer M such that
A(m,,m,,m,)*0 for some m,,m,,m, such that m, +m,=M.

The level of Vis just the smallest level any weight A such that x* occurs in the
decomposition of X(V). If V* is the standard §-module with dominant highest
weight

A=n,w; +n,0, +ny0y=n, ¥+, +n)y3+(n, +n,+ny%
then all weights of V% are of the form

A=pioy —py0ty = p3ty=A—2(p; — p, T +p373 + (P, — P03
for

P1.P2.P3€L” .
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So the level of any such weight is m, +m,+p;=m, +m, and the level of any §g-
module occuring in the decomposition of ¥* must be at least m, +m,. The vectors
of weight A generate an §-module of level m, +m, in V* so the level of V* is
exactly m, +m,, the level of 4.

If we decompose the character of §-module Ve # of level M, into standard &§-
characters we get

M
X()= Y Y petr™-00d 543, M—j,m)e™?. (5.21)
M2Mo j=0 meZ*
Definition. An §§-module in %, is said to be of level M of each of its weights is of
level M.

Note that the action of & on any weight can only move it by a linear
combination of «; and a, (yT and y%) so the y¥ coefficient, which equals the level, is
unchanged. Thus, the weights of any standard §§-module lie entirely on one level,
and an &§-module in €, is of level M if and only if all of its irreducible standard
&5-components have highest weights of level M. There are M + 1 isomorphism
classes of such standard &§-modules, representative characters being

{ij?+ (M=l <j<M, jeZ}. (5.22)

Given a standard §-module V* e P**, of level M, we have a unique standard
§s-module v* of level M whose highest weight is A. In fact, v* is exactly the lowest
level §-component of V2.

Conversely, given a standard §-module v* of level M with Ae P** (note the
restriction on the y* coefficient) there is a unique standard §-module, V', whose
lowest level &&-component is v*.

It is easy to perform this lifting and descent for sums of standard characters.
We will see later the significance of this correspondence for the theory of Siegel
modular forms.

Definition. We shall call an irreducible standard §§-module and its character §-
dominant whenever the highest weight of the module is in P**. We shall call an
arbitrary §g-module and its character -dominant whenever each irreducible
standard component is -dominant.

We shall denote by €, the subcategory of €, consisting of those &-modules
which are §-dominant. The above discussion makes clear the following.

Proposition 5.3. There is a natural one-to-one correspondence between the category
of &-modules € and the category of §-dominant §g-modules €, which induces a
one-to-one correspondence between §-characters in & and §-dominant F-
characters in &,

Remark. Given a level M §-dominant §§-character, Proposition 5.3 tells us that
there exist §g-characters on the levels above M naturally associated with it. In
theory we have operators which produce these higher level characters from the one
on level M. If the level M character is standard irreducible then these operators
construct the corresponding standard irreducible -character. Specific formulas
for such operators would be very interesting. For the case of level M =1 they might
be related to the Hecke operators which will be discussed later in Sects. 6 and 7.
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Consider an arbitrary level M §j-character of the form

M
Tu= petrM-pes 3 Aj(m)e"”g ) (5.23)

j=0 meZ*

We understand from (3.92) that x,, may be viewed as a function of z,, z,, z,. Using
(5.10) we can write

M
.0 a0 .
XM(zp Zy, 23) = Z X’w’ o J)wz(zp 29, 23) Z Aj(m)e2n1m23

j=0 mz0
M
= Y Pl 2 20z, (5.24)
i=0

where

FIor M-8z 2 z)= Ot 1m+2(21:222) = Oy i w2125 25) (5.25)
0,,,(21,25,23) = O _, 5(2,,2,,2,)

and

_<_<J'_“_)’_ _1)2,,,-,3 .
cfzy)=e WM+ 8 Y Aj(m)eZ"""“. (5.26)

m20

Proposition 5.4. Let yx,,(z,, z,, z;) be an §-character of level M written in the form
of (5.24). Let ke C. Then

_ -z 22 —1
XM(Z1’ZzaZ3)=('_Z3) kXM< 231’22_§, 73—)
if and only if

-1 e 2 M . i+1)(n+1

Proof. For ne Z define

1
2(M+2)

Cm—1(2z5) if 2(M+2n=m(mod2(M +2)),1=m=M+1
c(z3)=3—cCn_1(z5) if 2(M+2n=—m(mod2(M+2)),1=sm=M+1

0 if 2(M+2n=0,M+2(mod2(M +2)).
We have
M .
‘ '_Zo e2m(M+ Z)ZZ(S; — S; )cj(ZS)
20,2, 24)= 1= , 5.27
XM( 1 2 3) J(Zl,zz, 23) ( )
where
— nir 21+ 2mir2(M z3
Sji__ Z e4 (M+2)z1+2 (M +2) .

jt1

rslj:——z(M+2)
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This can be rewritten as
) . -
eZm(M+2)zz } C;(Z3)e4m'(M+2)zl+2n" (M + 2)z;3
z
"M +2) (5.28)

J(zy, 2,5, 25)

j+1 y/A { ¢ }
b Z+ < = —_— Z,—(M+1)S{sSM+2
ccause 2t o+ S+ - P s Pl T MH DS/ =M A2 so
i+1
thatifr=p+ 5 (ﬁ__*_ %) then the corresponding term in the summation is multiplied

by c¢{(z5), —c{(z,) or 0 according to the following rules. We have
2IM+2)r=2M+2p£(j+1)

with 1Sj+1SM+1so /=j+1. If 2(IM+2)r=£{/(mod2(M+2)) for IS/SM+1
then we want c|(z;)=c,_(z3)=c|(z;). If 2(M+2)r=—{/(mod2(M +2)) for 1=/
<M +1 then we want —c(z;)= —c,_,(z;) =c)(z,). The only other possibilities for
2(M +2)r(mod2(M +2)) are 0 and M + 2, for which we want 0=c/(z,).

By using Lemma 5.1 on the theta functions in the numerator of (5.25) and
Corollary 5.2 on the denominator, we can obtain the following expression for

XM(ZD 22, 23):

eZni(M+2)(zz—z¥/z3) [ M

- 2rir(j+1) __ ,—2nir(j+1) |
—2(M +2)iz, 2|5 ) eiz)

— anir(M+2) 2 4 2mirz(M + 2) L
e z3 Z3
j=0

_l. J(—Z1’22_£’__1) ,
|/ —iz, Zy Z3 23 (5.29)

Z
where the summations over r are taken over M)
It is easy to check that 2AM+2)
M L L 2M+3 .
Z (e2mr(1+ 1) e~ 2mir(j+ 1))01-(23): Z C’ ¢ (23)e2m(r . (530)
ji=0 £=0 (2(M+2))
Let (5.31) be the expression obtained from (5.29) by substitution of (5.30), and let
- P — )
(5.32) be the expression for y,, (—271, zZ,— ;‘—, —Z——> obtained by substitution of
3 3 3

variables in (5.28). After changing r to —r in (5.32) and using ¢_,= —c, one sees

- 2 _
2 A, ———1> holds if and only if

that XM(21,22,23)=(—Z3)_"XM( » Zp—

Z4 Zy 24

1 M+1 2mi ‘n
YTV ¢l ¢ \zy)e 2M*2)
i)/2(M+2) (=—(ZM+ 1) (2<M+2))( )
=(—z3)""c’( n )<:i) for 1Sn=<2(M+2). (5.33)

2M+2)) \ 23
Both sides (5.33) can be seen to be 0 when n=0 or M + 2 and if (5.33) holds for
some n, 1 Sn<M+1, then it also holds for —n, so the condition (5.33) can be
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-1
considered just for 1 Sn<M + 1. Writing out (5.33) in terms of cj(z3) and c, (—)
we finally get 23

(+t1H)nt1) )@ t1)
ez’" 2AM+2) _, M 2)

c{z,) =(—2z,)"kc (_—1)
0 2 i)/2(M+2) ¥z,

M i+1)(n+1
M+ ; (z5)sin (E—F:_(nz——)) for 0<n=<M.

e

J

Definition. Let ., be the complex vector space spanned by those &§-characters of
the form
X(ZI,ZZ,Z3)= Z XM(ZpZzaZ3) (534)

Mz0

with x,/(z,, z,, z;) satisfying the conditions of Proposition 5.4. Then .#, is naturally
graded according to the level of its corresponding modules:
M=), MM), (5.35)
M0
where .#,(M) is the space spanned by the characters of level M modules satisfying

Proposition 5.4.
By definition any x(z,,z,, z;)€ #, can be written in the form

Y A(m,,m,, my)e?mitmzitmz2tmszs) (5.36)

where the sum is taken over integers m,,m,, m, such that 4m,m, >m?, and m,, m,
=0. So any such y remains invariant under the translations z;—>z;+ 1,j=1,23.
From the formulas x(z,,z,,z,+1)=x(z,, z,,z;) and

-z 22 —1
s 27y ={- -k ( ! s 2y : »
X(Zl 2 Z3) ( 23) X Z 2 2 2,

one may compute that for any (a Z) €SL,(Z) we have
c

2 cz? az3+b) (5.37)

9479y = +d_k ’ - )
Wz 22,25) =2, +d) X(cz3+d 27 o+ d czy+d

11 01
because (0 1) and (_ 1 0) generate SL,(Z).

Remark. Naturally we are interested in the dimension of the space ., (M). The
answer to this problem, surprisingly, is connected with the theory of genus 2 Siegel
modular forms which will be discussed in Sect. 7.

Now let us find the form of characters in .#,(0) and .#,(1). From (5.24), since
%98+ =1, we have for an arbitrary x,(z,, 2,,2,) of level 0,

X
Xo(Z1s 23, 23)=co(z5)= Y, Ao(m)e*™™e M,(0) (5.38)

m20
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if and only if it satisfies

azy+b
czy+d

(cz3+d)"‘co( )=c0(23) for any (Z Z)GSLZ(Z). (5.39)

If we denote for h=0, 1 the classical Jacobi theta functions by

0,(z,,z)= T &Rt 3) (5.40)
jez
then
O, \(21:23.25) = 220 (z,, 2,), (5.41)
1Nz1 2, 25) = €25 {(@2M)0 (24, 23), (542)
and
AN s A G CHCNENT (5:43)

where 7(X)=X12*¢(X) denotes the Dedekind n-function. The conditions for
x(zy. 25, z3)=7"’20(zl, 25.23)Co(23) + X7Nzy. 2,5, 23)C 4 (23) (5.44)

to be in .#,(1) are two equations which may be stated in vector notation:

~1
) C"(z—) 1 (1 1\ /eo(zy)
(—zy)7" ’ =—(1 _1) (ci’<z§>)' (5.45)

e

This particular vectorial modular form has occurred in the investigations of
Maass [30-32] into Siegel modular forms of genus 2 in connection with the “lifting”
of elliptic modular forms. In order to make the connection between the theory of
algebra & and the theory of Siegel modular forms we must now review some
classical definitions and results.

6. Siegel Modular Forms and Hecke Operators

We recall some classical facts about Siegel modular forms of genus n =1 which can
be found in [1, 13, 40].

Definition. The Siegel domain (upper half-plane) of genus n=1 is the set of all
symmetric n X n complex matrices having positive definite imaginary part:

H,={3=X+iYeS (C)Y>0}. (6.1)
Definition. The real symplectic group of genus n is
Sp,(R) = {NeGL,,(RINJN'=J},
where J is the 2n x 2n matrix whose n x n blocks are

(f; é) (62)

n n
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The group Sp,(R) acts on H, by the analytic automorphism
N-3=(43+B)(C3+D)"! (6.3)
A B
for N= (

C D

An important discrete subgroup of Sp,(IR) is the subgroup of integral
symplectic matrices;

) €Sp,(R) and JeH,.

which is called the Siegel modular group of genus n. One sometimes denotes it by
r,

A Siegel modular form of genus n and weight k (natural number) is any function
f(3) which is holomorphic on H, and satisfies the two conditions,

A B

(I) For every N= ( c D) €Sp,(Z) and every 3eH,, det(C3+D) *f(N-3)
=£(3), in which case we say f is invariant under N,

(IT) Function f(3) is bounded in every domain of the form

{3=X+iYeH, |Y=cl,c>0}.

For n> 1 Condition (II) is known to follow from (I) and the holomorphism of f.
The set of all Siegel modular forms of genus n and weight k forms a finite
dimensional complex vector space, denoted .

Every feIt, has a Fourier expansion

f3)= Y a(N)e* T3, (6.5)

N20
where N runs over the positive semidefinite matrices in the set

S D)= {N=(n)eM QIN=N\t,2,€Z for i+j}. (6.6)

i’

. A 0
If we apply Condition (I) with an element ( 0 )el’n we get

D
det(A)'f(A34")=f(3) for any AeGL,(Z)
which implies the following relation for the Fourier coefficients of f;
a(AN A" =det(A)*a(N). 6.7)

If all coefficients a(N) such that det(N)=0 vanish, then form f(3) is called a
parabolic form. We denote the space of all parabolic forms of genus n and weight k
by ;.

A very important class of examples of modular forms of genus n and weight k
consists of the Eisenstein series, defined as

Y(3)= CZDdet(C3+D)"‘, (6.8)

where the summation extends over all inequivalent bottom blocks of elements of
Sp,(Z) with respect to left multiplications by matrices in SL,(Z).
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A classical theorem of H. Braun shows that the series ¥,(3) is absolutely
convergent for k>n+1 and is a modular form of weight k. The notation of (6.8)
will be reserved for the Eisenstein series of genus 2 and we will write ¢, for the case
of genus 1.

If we let g,=60¢,, g, =140, 4=g3—27g3 then for even k one has

9]{,1 =A5ml:— 12@C¢k

- N OCH,. (69)
It is well known that ¢, and ¢ are algebraically independent over C,
Y M =Clo, 6], (6.10)
k=0
and that,
dim 9} =cardinality of the set {(a,b)e(Z*)*|4a+6b=k}. (6.11)

An analogous result for genus 2 has been obtained by Igusa [13].

Theorem 6.1 (Igusa). The genus 2 Eisenstein series ¥,, ¥Y¢, ¥, ¥,, are
algebraically independent over C and

T M =LY, ¥, P10 ¥,

Remark (see [13]). Since ¢,ps=¢,, and 32-7¢2+2-53¢2=691¢,, we can
define normalized parabolic forms

Xi0= —-43876-2"12-3‘5-5‘2-7'1-53'1(‘1’4‘1’6— ¥Y.0
and
x12=131-593-2‘13'3"7-5‘3-7*2-337"(32~72'I’i+2-53¥’§—691'1’12).
(6.12)
Then we can write

M

ME=C[¥,, Yo, X100 X12] - (6.13)

k

0

Corollary 6.2 dimI? = Cardinality of the set
{(a,b,c,d)e(Z")*|k=4a+6b+10c+12d} .

The Siegel operator is a map @ : ;- ~* defined for n>1 as follows:

Let 3'eH,_, and 0<A€lR, then (3

0 .
0 i A) € H,, the limit

@n@)= lim (2 614

exists for fe My, and @ feM;~ 1. One can see that the parabolic forms N} are just
the kernel of @. In the case of genus n=2, if f is written as the Fourier series (6.5)
then the only terms of f which survive the limit process of (6.14) are those
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corresponding to N = (';)3 g), so if we let a'(ny) =a(N) and z' =z, then
(q;f) (23) = Z a/(ns)eZninazs .
n3z0

A very important class of operators on the space of modular forms is named
for Hecke, who considered them first for genus 1. We will discuss and generalize
that case here.

Let

Al(m)={(‘c’ 2) eMZ(Z)Iad—-bc=m} (6.15)
for 1=meZ. Then I') =SL,(Z) acts on A4,(m) by left multiplication and 4,(m)

breaks up into finitely many orbits under that action. A complete set of
representatives, one from each orbit, may be taken to be

A_l(m)={(g Z) eMZ(Z)|ad=m,ag1,0§b<d}. (6.16)

If f(z)eM;, define the operator T,(m) by
(LM D=m"" Y  flo-2)(cz+d)™* for o= (‘CI Z) el \4,(m).

oel\A1(m)
(6.17)
Remark. From (5.38) and (5.39) we see that M, coincides with .#,(0).
We will now extend the action of T,(m) to all of .#,.
Definition. If x(z,,z,,z;)e M, define
(Tk(m)y)(zl. Zy. 23)
T mz, ez az +b) “x
" ,,En\%l(m, X(cz3 +d’ m(22 cz, +d)’ czy+d (cz3+d)
a b -
for o= e d el'\d,(m), 1=meZ, 0<keZ. (6.18)

Clearly T,(1)=Identity operator.
We will abbreviate the expression under the summation by the slash operator:

[ mz, _ ez az3+b) “
(Xikg)(zlszzaz;;) X(CZ3+d, m(Zz CZ3+d)’ CZ3+d (CZ3+d)

for g= (‘c’ Z) ed,(m). (6.19)

It is straightforward to verify that for any g,€4,(m), g,€4,(n) we have

(Xlkg1)lkgz = (X'k(g1gz)) . (6.20)
The condition that §§-character ye .4, is exactly that

tg=x forall ged (1)=SL,Z)=T,. (6.21)
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So
(R(m)X) (21, 29, 23)=mk_ ! Z (Xlko') (Zp Zy, 23) (6.22)

ael\4y(m)

is clearly well-defined on .#,. It is also clear that T,(m)xe 4, because if {5, ...,0,}
is a complete set of representatives of I',\4,(m) then so is {s,g,...,0,9} for any
ger,.

In fact, T,(m) : M (M)— 4 (mM) can be seen as follows. The level of an -
character x(z,,z,,z;) is determined by the exponential factor involving z, since
that determines the y% coefficient of each weight in the corresponding §§-module.
If ye M (M) we can write

xzy5 25, 25)=€*"M2Y a(n, M, ny)e?™ Mz nsz) (6.23)

and using the representatives (6.16)

(R ez =mt " T ¥ d r{azme, (6.24)
a1 0=b<d
ad=m

az3+b)
d

in which the exponential involving z, is e>™™™*2. So T,(m)xe #,(mM).

7. The Correspondence of §F-Characters with Siegel Modular Forms of Genus 2

We have seen in Sects. 3 and 5 how §-characters X(z,, z,, z;)e & and §§-characters
1(z,,2,,23)€ &, can be viewed as functions on the genus 2 Siegel domain H,. We
wish to investigate the transformation invariance of these functions and determine
when they are genus 2 Siegel modular forms.

Write an §-character Xe & as

X(3) :X(Zp 2y, Z3) = Z a(np n,, ns)eZni(mzl Frazatmez)

nan3 2 ni

nay,n3=0

for 3:(23 Z‘)EHZ. (7.1)
Zy I,

The action of the Weyl group Wa~PGL,(Z) on H,, given by (3.102), determines
an action of g'e PGL,(Z) on functions of JeH,;

g (3= rf939)- (7.2)

But ¢*- X(3)=X(93¢") =X(J) because of (3.91), the invariance of the form (-, -)
on S,(C) under PGL,(Z), and the fact that weights of §-modules which are W-
conjugate have equal multiplicities. It is also clear from (7.1) that for any M e S,(Z),
X(3+ M)=X(3). Since the root lattice Q is isomorphic to S,(Z) we may consider
the action of ge Q on X(3) to be q-X(3) =X (3 + M) for M =v(q)e S,(Z).

The Weyl group W acts on Q, so we may form the semidirect product

Wix Q = {W, 61)5 Wx Q'(Wp q1)'(wz, ‘I2)=(W1W2, Wz_ ! "qy +¢12)} . (7.3)
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Proposition 7.1. For qe Q, let v(q)=Me S,(Z) and for we W, let W(w)=x determine
M
x€PGL,(Z). Then the map | : WX Q—Sp,(Z)/ + I defined by f(w, g) = (g ( ;‘,)_ 1) is

an isomorphism of WX Q with the “upper triangular” subgroup in the projective
symplectic group.

Definition. Let the action of Wi Q on a function f(3) be given by
w.q)- f(J=Fw.q)- f(J). (7.4)
The action of Sp,(Z) on H, given in (6.3) is well-defined on the projective
symplectic group Sp,(Z)/+1 whose elements we still denote by (/é‘ g) If
N= (g ( A,())_1>thenN -3=A3A4"and det((49) 1) *X(434") =det(4)*X(3). Since
AePGL,(Z), Condition (I) of the definition of Siegel modular form will be satisfied
for all such A4 if and only if k is even. If N= ((I) AI/I) for MeS,(Z) then N-3
=3+ M and det()” *X(3 +M)=X(3). So we have

Proposition 7.2. Let X(3) be any §-character. Then for any N = (
and any 3e H,, X(3)=det(D) *X(N-3)=X(N-3) if k is even.

A B
0 D)esz(Z),

Proposition 7.3. Let f(3)€IM?. Then there exists a unique collection of standard §-
characters {X*3)e&|AcP**} and a unique collection of complex numbers
{c,eClAe P *} such that ()= Y ¢, XX 3)

Aept +

Proof. By Igusa’s result (Theorem 6.1) we may assume k=4 is even. So if
A B
N= (0 D) €Sp,(Z) we have f(N-3)=f(3) and X(N - 3)=X(3) for any X(3)eé.
Recall the Weyl-Kac character formula (Theorem 3.1). The numerator and
denominator may be considered as functions on H, since A+¢€P* . Let us use
the notation «/**¢(3) for the numerator, so the denominator is just /%(3). It is
easy to see that if AePGL(Z) and MeS,(Z) then

L4334 = det(A).si‘ *¢3) and SPTAZF+M)=L*13J). (7.5)
In fact, we can write out the Fourier expansion

M).+o(3)_____ Z det(A)eZniTr(ANA‘S) , (76)
AePGL2(Z)
where 0 < Ne S),(Z) corresponds to A+ ge P* *. In the theory of Lie algebras one
defines the set of strictly dominant weights to be

P ={n 0w, +n,0,+n,w,l0<neZ for 1=Zi<3}. (7.7)
Then

PH Y ={nyt+n,p5+ny4€ P ny>n,>n, >0}, (7.8)

WW-P***)={NeS,(Z)N >0}, (7.9)
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each PGL,(Z) orbit in v(W-P** *) has a unique representative in v(P***), and
P**t=o+P** If \eP*" then A+90eP**™*, and conversely.
Consider the function

fQ=1Q)ZJ). (7.10)

Certainly f(3+M)=f"(3) for any MeS,(Z) and f(A3A)=det(4)f(3) for
any AePGL,(Z). Because each term of &/%(3) corresponds to some 0 < Ne S,(Z)

each nonzero term of f'(3) corresponds to some 0 <N, € S,(Z). If we decompose
f(J) into PGL,(Z) orbits we may write

@)= Y aiN) Y det(4)e’ TN, (7.11)

New(Pt+ *+ +) AePGL2(Z)

where a(N) is the Fourier coefficient of f'(3). Since Nev(P* * *) there is a unique
Ae P** such that v(A+ )= N and we recognize the inner sum of (7.11) as &/**¢(3).
Dividing by /%(3) and using the character formula o/**¢(3)/.%3)=X*3) we

have f(3)= Y, ¢, XX3) where ¢,=a(N) for N=v(1+ ).

AeP+t

Remark. In the proof of Proposition 7.3 we have used only the convergence of
f(3) and its invariance under the parabolic subgroup.
Following Maass [31] we consider two subgroups of Sp,(Z).

Definition. Let

(7.12)

and

- O

(‘c’ b)eSLZ(Z). (7.13)

0
a
0
c

S OO =

It is clear that E; and E, are subgroups of Sp,(Z) isomorphic to SL,(Z).

I B
Lemma 7.4. The subgroups E |, E, and {( 0 I) €Sp,(Z)|B= B‘} suffice to generate
Sp,(Z).

Proof. This well-known fact is an easy exercise.

Proposition 7.5. Necessary and sufficient conditions for f(3)eIM? are:

2

z, ez a23+b) —k_

(® f(cz3+d’z2 czy+d czy+d (cza +d) =2y, 25, 23),
®) fzy+m,z,+my,z3+my)=f(2,,2,,2,), and

©) flzy,25,25) =1z, 23, 2,)

for all (Z Z) €SL,(Z) and all m,m,,m,eZ.
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Proof. Condition (a) is equivalent to invariance of f(3) under E,, (b) is trivial, and
(c) implies a symmetry between E, and E, so that Lemma 7.4 gives the result.

Lemma 7.6. Write the Fourier series of a function f(3)=f(z,,z,,25) on H,
satisfying (b) as

f(21,22,23)= Z fnz(zl, Z9,23), (7.14)
nyeZt
where
121,25, 2)=€2""%2 % a(ng, n,,ny)er imat ), (7.15)
20
4n:3n;§ n}

Then f(z,,z,,2,) satisfies (a) if and only if f, (z,,z,,z,) satisfies (a) for each n, 20.
Proof. If each f, satisfies (a) then certainly their sum f does also. The condition
(a) for f(z,,2,,z,) is just that for each

o= (‘C’ Z) eSL,(@), f(z,, 2y, 23) =(f1,0) (2, 2, 23) = zo (fh0) 21523 23).

nyz
So Y filz1.2523)= Y (f,,k0) (2,525, 2;) and comparing the expansions of
n220 n2z0
both sides with respect to the variable z,, we get f, (z,,2,,23)=(f,,1,0) (2, 2,, z3)
for each n, 20.

Theorem 7.7. Let f(3)eM?. Then there is a unique expression

Q= Y amlzy2525), (7.16)
Mz0

where € M (M) is a level M §-character satisfying (a) and (b). Thus, M C M,
Proof. By Proposition 7.3 we can uniquely write f(3)= ) ¢, X%3). Each

AepPt +
standard §-character X*(3) can be uniquely decomposed into &-characters

according to level as in (5.20). The resulting decomposition of f(J) is that given in
(7.14), so for each M =0 f,(z,, z,, z5) = xp(2;5 25, 2;3) is an F§-character of level M.
Since f(3)eMZ, f(3) satisfies (a) and (b), so each y,,(z,, z,, z,) satisfies (a) and (b),
by Lemma 7.6. That is, x,€ #,(M) and f(3)e #,, so MZ C M,.

Corollary 7.8. M2 ={ ()€ M [(z,, 25, 23) = [ (21 23, 2,)}.
Proof. Clear from Proposition 7.5, Lemma 7.6, and Theorem 7.7.

Definition. Let the level of a function f(J3) satisfying (b) be the least positive integer
n, such that f, +0 in (7.14).

Definition. Let T¥(m) be the subspace in M? of functions whose level is at least m.
Then we have the filtration of M7

MZ=TX0)>TZ(1)>T2)D ... DTm)D ... (7.17)
and it is clear that if f(3)e X7 (m,) and g(3)e I} (m,) then
f(3)g(3)ezlfl+kz(m1 +m2)-
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Also note that because of condition (c) TZ(1) is exactly the subspace R? of
parabolic forms.
Recall from the remarks following Theorem 6.1 that

2 M =CLY¥,, ¥, X10212]

k20
is the Igusa ring generated by the Eisenstein series ¥,, ¥, and the parabolic
forms x, ¢, x;,- According to the above definition, ¥, and ¥ are of level 0, x,,,

and y,, are of level 1. So the monomial Y4¥5xS,x4, for a,b,c,deZ” is in T(m)
but not in TZ(m+ 1), where m=c+d and k=4a+6b+10c+12d. We may write

CLY,. Y6 X100 X12]= ZO Zogﬁf(m}, (7.18)
k=0 m=

where

W2 (m) = > CYLPexiont,- (7.19)
da+6br Lot 12d=k
ctd=m

Then

M= 3 M(m) (7.20)
m20

and we have for each m=0 a vector space isomorphism
MZ(m) ~Tm)/THm+1). (7.21)

From (7.19) and the linear independence of the monomials which span IR?%(m)
it is clear that the dimension of M?(m) over € equals the cardinality of the set
S(k,m) defined to be

{(a,b,c,d)e(Z*)*k=4a+6b+10c+12d,c+d=m}. (7.22)

We wish to study the relationship between the spaces MZ(m) and .#,(m) for
each m20. It is obvious that MZ(0) ~ I} ~ #,(0) [see (5.38), (5.39)], where the first
isomorphism is given by the Siegel operator &.

Definition. For each m>0 let the linear transformation L, :IMZ— #, be defined by
L, (f(3)=1.3). So L, is just the Siegel operator ®.

Definition. Let #, [resp., #,(m)] be the subspace of .#, [resp., #,(m)] consisting
of those PSL,(Z)-invariant §g-characters which are §-dominant. Recall that an
irreducible standard §-module and its character are called §-dominant if the
highest weight is in P* * (2.20). and that an arbitrary §-module and its character
are called -dominant if each of its irreducible standard components is
&-dominant. One sees that

M (m)={f,(3)e A (m)|A(n,,m,n;)=0 for all n,<m}, (7.23)
where
fm(3)=e2nimzz Z A(nl,m, na)eZm'(n,zl +n323)‘ (724)
amnz 2 n}

n320
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Because of condition (c) we see that if f(J)e I,f(m) then L, (f(3))e A, (m). Since

M2(m) C T(m), we have
L, : D (m)— ., (m), (1.25)

where we have denoted by L/ the restriction of L, to the subspace MZ(m). We can
now find the dimensions of the spaces .#,(m).

Theorem 7.9. The linear transformation L., :IMZ(m)— .#,(m) is an isomorphism for
each m=0.

Proof. We have the basis of MZ(m)
{PL¥exioxi2|(a b c,d)eS(k,m)}. (7.26)
Let ('P4)o = Lo(ql4)a ('Pe)o = Lo(lps)’ (4 0)1 = Ll(xlo)a and (X1 2)1 = Ll(Xl 2)- Then it is

clear that
L,(¥% 'ngcl OX‘I D= (lp4)'(’)( We)’(’)()h o)c1 (xy 2)‘}
=0506(10); (1121 5 (7.27)

where ¢, and ¢, are the genus 1 Eisenstein series involving only z,. Also,
(X10); € #1(1) and (x,,),€ #,(1) are Fg-characters which may be written [see
(5.23)] as: . .
(X10)1(3) = D1o(z3)x” (3)+ Dio(z3)x"*(3), (7.28)
(Xl 2)1(3) = Di 2(23)Xw?(3) + D%z(zg.)xwg(?)) s (729)
where the coefficients Dj(z,), k=10,12, j=1,2 are power series in g=e>"** with
constant term 0.

We claim that this system of equations can be inverted, expressing 7°% and 5
as a combination of (x,,), and (x,,), with coefficients being Laurent series in g.

Let us write, for k=10, 12, N=( M3 n1/2)’ 3= (23 Zl)’

n,/2 n, zZ, z,
%)= NZO c(N)e? T3 (7.30)
and
nizy nin3z n 0 - 2mizs n 1/2
(Xk)1(3)=32 n§132 3[ck(03 1) O(zy,25)+e 2 /4ck(1/32 1 )@1(21,23)],
(7.31)
where 0,(z,,z,), h=0, 1, is given in (5.40).
Let
0, n3 0 2min3z3
€zy)= Z>:1 alo )¢ (7.32)
and
1/2 21!1‘(7!3—-1)23
%Nz,)= c("3 )e x 7.33
k( 3) n,él k 1/2 1 ( )
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so that we have

(110)1(3)) — p2miz2 (‘6‘1’0(23)(610(23)) (@o(zv 23)) 734
((X12)1(3) ¢ %?2(23)(6}2(23) @1(21’23) . (734
To invert this system and obtain
(00(21,23)) — ¢ 2miz2 (@?0(23)9(1)2(23)) ((X10)1(3)) (7.35)
0,(z,,25) 910(23)912(23) (X12):1(3) .

we need only that €9,(z,)%},(z;) — %} (2,)63,(z5) be nonzero.
From the tables of Resnikoff and Saldafia [39] we have the following
expansions:

@ y(25)=1(2q— 3642 +272¢° — ...)
@lo(z3)=%q~ *(—19+164°~99¢° + ...)
©°,(2,)=L(10g— 132¢> + 736¢° + ...)
€1,(z3)=159""*(1q—88g*+1275¢° + ...).

(7.36)

From these we find that
fg‘l’o(za)(g}2(23)—‘5{0(23)(6‘1’2(23)=iq‘ 4q*—42¢°+819¢*+...), (71.37)

which shows that @, and @, can be expressed as in (7.35). From (5.42), (5.43),
(5.25), and (5.26) we also have

1Q)=e2""2g" 1% (@02, 2,) (7.38)
and

143 =291 (9)O (2, 75).- (7.39)

Combined with (7.35) this gives
1%(3) =4 2(1+429+945¢> + ...}~ ()L — 67 (23) (X10)1(3) + € (23) (1 ):(3)]
and (7.40)
1°4(3) =4 "4 (1+429+945¢% + ...)¢ (@€} ,(23) (110)1(3) — 1 o(25) (X12),(3)]-
Of course, ¢ “*(q)= ). p(n)q", where p is the classical partition function, is a

nz0
power series in g with lowest term 1. From this and (7.36) we see that we may write

Xw?(3) = E}o(z3)(xlo)1(3) + E}z(z3)(){1 2)1(3)
and (7.41)
1°43) = E2o(23) (t10)1(3) + E33(23) (1 1(3),

where
Ei(z)=q""' Y ei(nq" (7.42)

nz0

for k=10,12, j=1,2, with ej(n)e Q and ¢{(0)+0. This establishes the claim.
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Furthermore, we may express

m

Yy i=q Om(q)(xw)'r-"(xu)a (7.43)

i=

for 0=j<m, where F(q) is a power series in gq.

We wish to emphasize the significance of the fact that this series begins with
g~ ™ This is responsible for the isomorphism of MZ(m) with .#,(m).

We know that ()c“’?)'ll and ()(‘”‘2))"2 are the characters of the n,™ and n,™ tensor
powers of the standard §§-modules with highest weights @? and w9, respectively,
and that ()(“’?)"'()(“’g)”2 is the character of the tensor product of the two tensor
powers just mentioned. This tensor product decomposes into the direct sum of
standard modules [16] on level n, +n,. In the decomposition of this tensor
product the §§-module with highest weight n,w{ +n,w? is known to occur with
multiplicity 1, and the only other §§-modules which occur have highest weights of
the form

nof+n,0)—ijo, —in, for i,i,eZ*.

Thus, all weights which occur in the §§-module with character ()(“’(‘))"‘()(“’g)"2 are of
that form. This means that on level m, A= jw} + (m— j)o9 occurs with multiplicity 1
in the module with character (x“’(‘))f(xwg)”‘“j but does not occur in any module with
character (x°Y*(x“%)™* for k<j. Since

jool +(m— oy =jy} +my}
we may say that e2™Uz1*m22) occurs with coefficient 1 in the Fourier decomposition
of (x*%)i(x“%™~7 but does not occur in that of (x*1(x*%™~* for any k<j.
Therefore. any level m §§-character y(3) can be uniquely expressed as a

homogeneous degree m polynomial in x°! and x“® whose coefficients are power
series in g =e?™3, namely,

1= 3 TV (7.4
for
Tz)= T tfn)e™o. (7.45)

The uniqueness of the decomposition (7.44) can also be shown using the fact
that the fundamental characters are proportional to Jacobi theta functions [see
(7.38), (7.39)].

Combining (7.44) with (7.43) we may write any level m §{-character x(3) as

13)= % H@ o i, (7.46)

where H (q)=q "G q) and G(qg) is a power series in g which coefficients in C. We
can also see easily that if y(3)e.#,(m) then the power series G {q) for each j has
lowest nonzero term of degree at least m, so that H (g) is a power series in g.
Consider the (m+ 1)-dimensional vector space V, spanned by the functions
(N34 =3, 0<j<m, over the field & of Laurent series in g. The discussion
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leading up to (7.44) shows that these m+ 1 monomials are a basis for V,,, (7.46)
shows that .#,(m)C V,, and (7.43) shows that the (m+ 1) functions (x,o),(x;2)7 7,
0=<j=<m, also span V,, over &, so that they are also a basis for V,, over #. Thus the
expression (7.46) is uniquely determined for each x(3)e .#,(m).

a 0|b O
a b _ |0 1]0 O
For any g= (c d)e SL,(Z) we have g= ~0ld o0 €Sp,(Z).
0 010 1
Replacing 3 by g-3 and z, by g-z, in (7.46) we get
x(g-3)= Z 19°23) (107G 3 (X12)1(F- 3).- (7.47)

Thus, we get

X(3)= i Hj(g'z3)(cz3+d)10(m—j)+12j‘k(X10)T‘j(3)(X12){(3), (7-48)

j=0
where we have written H (q) as H (z,). Comparing this with (7.46) we see that for
each j, 0<j<m,

H|(z3)=H (g z5)(czy+d)! 0"~ P 127k, (7.49)
That is, the Laurent series H (z;)= e mimzG {(z5) occurring as coefficients of the
monomials (x,,)7 “(x,,) in the expansion of x(3)e A (m) transform as modular
functions of genus 1 with weight k— (10(m — j) + 12j). In the case when x(3)e .#,(m),
H (z,) is a power series in e?™% 50 is holomorphic at co and is actually a genus 1

modular form of weight k— (10(m—j)+ 12j). From the classical result (6.10), we
may thus express each H (z;) as a polynomial in d5PL with

4a+6b=k—(10(m—j)+12j),
and then we have that

x3)= Z Z %apea®5P6(X10)1 (X1 2) (7.50)

ctd=m 4a+6b+10c+12d=k

for some a,,_,€C. Thus,

L’m( > > “mﬂ"l'f"éxiox‘iz) =1(3) (7.51)

+d=m 4a+6b+10c+12d=k

establishes the surjectivity of L, onto .#,(m). Injectivity was established when the
monomials (y,,);(x,,)7 7/ were seen to be a basis of ¥, over the field of Laurent
series Z.

Corollary 7.10. For each m=0
dim(.#,(m)) = dim (M7(m)) = Cardinality of the set S(k,m)
given in (7.22).
Corollary 7.11. The space M'= Y. Y. #,(m) has the structure of a graded ring

kzZ0 m20
and is isomorphic to the Igusa ring C[¥,, ¥ ¢, X10 X12)-
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Theorem 7.9 shows what a special role is played by the space .#,. In
Proposition 5.3 we saw a natural correspondence between the characters of
&-dominant F§-modules in category ¥, and §-modules in . Parallel to that we
have from Theorem 7.9 a correspondence between the space .#, of weight k
PSL,(Z)-invariant §-dominant §-characters and the space of §-characters which
are weight k Siegel modular forms, namely, M2, whose dimension is given in (1.25).

The “lifting” of elliptic modular forms to Siegel modular forms has attracted
the attention of several authors [2, 20, 22, 38, 43]. Our work has been particularly
inspired by the work of Maass.

In a series of papers [30-32] Maass studied the subspace 22 CIN? of forms

f@)= ¥ AN (7.52)
0=NeS3(2)
satisfying the special coefficient relation
n,ny  ny
2 2
A("3 "1/)= Y di4 : (7.53)
nl/z n, d|(n1,n2,n3) ny
>0 2d

Such a relation had been observed in the extensive coefficient tables of Resnikoff
and Saldafia [39] for some Eisenstein series ¥, and was proven in [28] by Maass
for all Eisenstein series. Maass then considered the subspace &7 of parabolic forms
in 82 =CY, + S7. He computed the dimension of these spaces and showed that
the relation (7.53) is equivalent to a simple construction of f(3) out of Hecke
operators applied to the level 1 of f(3), namely f,(3)e .#,(1). Maass found the
dimension of &} to be equal to the cardinality of the set S(k, 1), and the dimension
of 82 to be one greater than that. The construction using Hecke operators of forms
in £7 shows that any given f,(3)e .#,(1) determines a unique f(3)e &2 whose level
1 slice is f,(3). Let f,(3) be written as

. i +
eZmzz Z A(nl, 1, na)e2m(ruz; nizs) .
4n32n}
n320

Then the corresponding f(3) is in S} if and only if 4(0,1,0)=0. So on level 1 the
subspace of .#,(1) consisting of those f,(3) such that A(0,1,0)=0 has the same
dimension as the space MZ(1)~ #;(1).

The work of Maass is related to our Theorem 7.9 in the case when m=1. In the
case when m>1 it is not known how to use Hecke operators to construct from a
given f,(3)eMm) a form f(3)eM? such that L,(f(3))=1,(3). Our theory
indicates that such a construction may exist.

In order to relate our work to that of Maass we would like to show his level 1
construction using the Hecke operators T,(m) defined in (6.18). Recall that the
genus 1 Eisenstein series of weight k is

2mi)* .
FoDrgE, B, 0

where { is the Riemann zeta function and o, _,(n,)= Y, d*~! is the divisor power
function. dlns

o (z5)=1+
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Theorem 7.12 (Maass). Let

fl(zl’ 22’ 23)__. eZm‘z; Z A(nl, 1’ na)eZni(mzl +n3z3)
4n32n}
n3=0

be a function on level 1 satisfying condition (b) of Proposition 7.5, and let
(k=1)'L(k)

“omy Pt ,E, (Tm)f)(z1, 22, 23).

Then f,(z,,2,,2;)€ M,(1) if and only if f(z,,z,,2,)€ RF. Also, f,(z,,2,,25)€ M) if
and only if f(z,,z,,2;)€ SL.

Proof. As shown at the end of Sect. 6, T,(m) : #,(1)— M, (m), so if f, € .#,(1) we have
that for m21, L,(f)= T(m)f, € #,(m) satisfies Proposition 7.5(a) and (b), as does

f(z,, 2, 25)=A(0,1,0)

(k—1)! (k)
Ly(f)=A0,1,0)——7— iy o (z;)e A0 =M.
So f(z,,z2,,z,) satisfies (a) and (b). Let us write
fi(zy, 25, 25) =222 Z Z A(n,, 1,n,)e2mimartnazs) (7.55)
n320 njeZ
Then we have
(T{(m)f1)(z4,2,, 25) n3b
__elmmzz Z Z Z k ld kA(nl,l n3)e2m(n1 21+n3d—223+T)
n320 nieZ dlm 0Sb<
d21
k=1 i Ezl rlg—m—23
e Z>:o Z1 a|z (r—;—) Any, 1,"3)92" ( e ) . (7.56)
n3=0 nye drg,lng
We have used the fact that
21unib d if dIn
d = . 3 7.57
ogj {0 if dfn,. (7.57)

Putting ad =m and replacing n, by dn, in (7.56) we have

Tm)f)Q@)=e*=2 Y Y Y a*~ ‘A(nl, ———) g2ritmazitnsazy) (7 58)

n320 neZ alm
az1

Then
f3)= Zl (Tm) £,)(3)

= z e2m’mzz Z Z Z ak lA(nl’ ) 2ni(mazl+n3a23). (759)
m21

n320 nyeZ alm
az1

If we set this equal to the Fourier series Y A(N)erritmzitmazatmzs) for

0 <NeS3(Z
m1/2) : eNeS2D

N=( and compare coefficients then we get the Maass coefficient
m/2 m,
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relation (7.53). This relation shows that for n, >0, A(n,,n,,n;)=A(n,, n,,n,), and
that A(0,0,n;)=A4(0,1,0)a,_,(n3)=A(0,n,,0), so f(3J) satisfies condition (c), sym-
metry in z, and z,, and by Proposition 7.5 we have f(3)e M?. Since f(3J) satisfies
the Maass condition (7.53), f(3)e 2. The converse is clear, as is the fact that f(3)
is parabolic if and only if A(0, 1,0)=0, that is, f,(3)e #(1).

2
Theorem 7.13 (Maass). We have for k 24 even, dim(#,(1))=dim(8})= [l—(%—] and

-4
dim(4(1)) =dim(S})= [E——} which equals the cardinality of the set S(k,1) given

in (1.22). 6
Remark. Maass established these results in [30, 31] based on the computation of
60(23)) satisfying (5.45) which
c,(z3)

determine an element of .#,(1). The condition (5.45) actually shows that c(z;)
determines c,(z;). Maass, however, used a different notation than ours. He used
the classical Jacobi theta functions given in0(5.40) to express a level 1 function
rather than the fundamental §{-characters ¥°* and 7“? as we have done. One result
of this difference is that Maass put the factor n ™ '(e2™23) into the coefficients ¢, and
Co

the dimension of the vectorial modular forms (

¢, which made his vectorial modular form ( ) have weight k— . For us that form

¢
has weight k.

The computation of dim(S?) in [31] is based on results of Petersson in [37].
Corollary 7.10 gives a dimension formula for .4 (m) for all m=1 which generalizes
Maass’ result and allows each f(3)eI? to be a “lifing” of a vectorial modular

colz3)
form cl(.z3) of weight k satisfying the conditions of Proposition 5.4. We may
culz3)
show that each c/(z,) is an automorphic form of weight k with multiplier system
with respect to a subgroup of the congruence subgroup I',(4(M + 2)). Recalling the
notation of (5.24)5.26) and Proposition 5.4 we see that if we write a level M
function as

3= ji Pt MY Qe (z,) (7.60)
Col23)
then f,,(3)e #(M) if and only if the vectorial function €(z,)= Cl(:zs) satisfies
the conditions ‘ CM(.Z3)
0:(—;3—1)(—23)"‘= U®(z,) (7.61)

and

€z, +1)=VE(z,), (7.62)
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where U=(U;;) and V=(V})) are (M+1)x(M+1) matrices such that for 1=i
SM+1land ISjSM+1

‘ /2 . mi
Uij = M——{-z sin (m) (7.63)

(g~ 4)2mi
p— 4(M+2) 8
Vi=e ’

and

V;=0 for i%j. (7.64)

This is equivalent to saying that there is a group homomorphism 7 from PSL,(Z)
to GL,, 4 {(C) such that

(g(az3 +b
czy+d

)(cz3 +d) k=1 (‘C’ Z) €(z,) (7.65)

for all <z Z)EPSLz(Z) such that

01 11
T(—l O)—U and 1:(0 1)—V. (7.66)

The subgroup of PGL, (Z) consisting of all elements g such that t(g) is diagonal is
the subgroup under which each function c(z;) will be automorphic of weight k
with a certain multiplier system.

1 1), .
We can certainly say that ( 0 1) is in that subgroup. Also, from (7.64) we see

1 4M+2)
0 1

1 0_ 011—4(M+2)0—1_ -1
T(4<M+2) 1)‘T<(—1 0)(0 1 )(1 0))““”(] =l

which is diagonal. A deeper investigation of this subgroup is carried out by Kac
and Peterson in [18].

that ViM* 2 =(—1)M*2 So ‘c( ) = 4] and therefore,

8. Future Prospects

We would like to indicate briefly in this last section some directions for further
research which we hope to pursue in subsequent publications.

Within algebra § there are other subalgebras besides &, with respect to which
one may decompose § and §-characters. We have in mind some rank 2 hyperbolic
Kac-Moody algebras found by Lepowsky and Moody in [24] to be connected to
Hilbert modular surfaces. We expect that such decompositions give a Lie-
theoretical explanation of the connection between Siegel modular forms of genus 2
and Hilbert modular forms associated with quadratic number fields (see [39]).
Geometrically one sees that slicing the Siegel domain (cone) by &, gives parabolas
while slicing it by hyperbolic rank 2 subalgebras should give hyperbolas.

We may generalize the construction given in Sect. 4 of a hyperbolic algebra
® =G(g, V) from an affine algebra g" and its basic module V. In the case when g
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is of ADE type the basic module V has a nice construction (see [10, 17]) and action
of g" on V is given by vertex operators. One may expect that a result such as
Theorem 3.2 can be established in that generality which would shed light on root
multiplicities of ®.

The interesting Kac-Moody algebras will be those whose Weyl groups are
related to classically studied arithmetic groups. The rank 3 hyperbolic algebras
have already been seen by ourselves and Yoshida [42] to have hyperbolic triangle
groups for Weyl groups. The representation theory of these algebras should shed
light on the theory of modular forms with respect to certain arithmetic subgroups
of Sp,(R).

Our construction of ® when applied to g" of type C" gives an algebra with
Dynkin diagram shown in (1.27), and when applied to g" of type DY gives an
algebra with diagram

—<———» °. 8.1)
Both algebras have Weyl group W with generators A4, B, C, D having relations

1=4>=B*=C?=D?,
1=(AB)*=(AC)*=(AD)*=(BC)* =(BD)*=(CD)’. (8.2)

These are the relations among the four generators of the Klein-Fricke group ¥¥
which contains the Picard group ¥, =PSL,(Z[i]) as a subgroup of index 4. (See
Magnus [34, p. 152], but there are errors in his list of relations.) ¥'¥ is generated by
A, B, €, D where

A z-7Z

B.z——iz

8.3
€. z>—z—1 ®.3)

D:z-1/z.

One or both of these algebras should be closely related to the theory of Hermitian
modular forms of genus 2. In particular, the lifting of g™-characters which are
PSL, (Z[{])-invariant to ®-characters which are Sp,(Z[i])-invariant should be
similar to the lifting discussed in this paper. Already Kojima [21] has investigated
this lifting for level 1 using Hecke operators as suggested in the work of Maass
[30-32]. We believe that the existence of lifting and descent operations between
modular forms of various types should be explained by the presence of a Kac-
Moody algebra and a subalgebra.

Finally, we should mention that there are many questions concerning just the
algebra § which remain unanswered. One would like to have complete infor-
mation about the root multiplicities and a deeper understanding of the structure of

&.
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Note added in proof. We have recently learned through the referee of the paper “On the theory of
Jacobi forms” by M. Eichler and D. Zagier. The authors, inspired by the work of Maass [29-32],
undertook the construction of a new theory. Jacobi forms (of even weight) in our language are certain
characters of affine Lie algebra §,. This fact naturally entailed some overlap with the second part
of our paper (Sects. 5-7). These two different points of view can be very fruitful for further results and
generalizations. We are grateful to the referee for informing us about the work of Eichler and Zagier,
and to Zagier for sending us their preprint before publication.

We have also received a preprint “Kac-Moody symmetry of gravitation and supergravity theories”
by B. Julia (’Ecole Normale Supérieure) in which he conjectures that the hyperbolic algebra § may
be an algebra of internal symmetries of Einstein gravitational equations. It has been known for about
ten years that the subalgebra §, is responsible for the internal symmetries of gravitational plane
waves. Thus, the highly abstract Lie algebra § promises to describe fundamental symmetries of nature.
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