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1 Introduction

Fusion rules play a very important role in conformal field theory [11], in the
representation theory of vertex operator algebras [9], [8], [10], and in quite a
few other areas. For example, fusion rules were used in [6] to obtain information
on D-brane charge groups in string theory which on the other hand correspond
to certain twisted K-groups. This line of research found a mathematical cul-
mination in the theorem by Freed, Hopkins and Teleman [7], showing that
twisted equivariant K-theory can be identified with a fusion ring. In [1] a con-
nection was found between the fusion rules for the Virasoro minimal models
and elementary abelian 2-groups. Further work in [5] extended this idea to
find a connection between the fusion rules for type A1 and A2 on all levels,
and elementary abelian 2-groups and 3-groups. This was extended as far as
was possible in [17], [18] to the case of Aℓ for any rank ℓ and any level.

In [4] an introduction was given to the subject with major focus on the al-
gorithmic aspects of computing fusion rules for affine Kac-Moody algebras.
In particular, it was emphasized that the Kac-Walton algorithm [14], [19],
[12] for fusion coefficients is closely related to the Racah-Speiser algorithm
for tensor product decompositions, which was the subject of earlier work [2],
[3]. [4] included a conjecture on fusion coefficients which restates the Frenkel-
Zhu theorem [10] in a form which shows it to be a beautful generalization
of the classical Parasarathy-Ranga Rao-Varadarajan tensor product theorem
[16]. That conjecture had already been made by Walton [20] in 1994, but we
believe that it has not been proven up until now.

An outline of the organization of the paper is as follows. We give the def-
inition of a fusion algebra in section two, then we give notation and back-
ground about finite dimensional simple Lie algebras in section three. This in-
cludes facts about irreducible representations, contravariant Hermitian forms
on them, special results for sl2 and its representations, and projection opera-
tors. In section four we briefly give notations about affine algebras leading to
the level k fusion algebra associated with simple Lie algebra g. In section five
we discuss tensor products of irreducible finite dimensional modules for g and
the PRV theorem. In section six we state the Frenkel-Zhu fusion rule theorem,
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the Walton conjecture, what it says in the special case when g = sl2, and a
corollary relating fusion coefficients to tensor product multiplicities. We begin
the proof of the Walton conjecture by rewriting the Frenkel-Zhu theorem in
several ways. In section seven we review the proof of the PRV theorem and
refine it to help find a relationship between the spaces which occur in the
Frenkel-Zhu theorem and the Walton conjecture. In section eight we put all
these pieces together to finish the proof of the Walton conjecture.

2 Definition of Fusion Algebra

Let us begin with the definition of fusion algebra given by J. Fuchs [11]. A
fusion algebra F is a finite dimensional commutative associative algebra over
Q with some basis

B = {xa | a ∈ A}

so that the structure constants N c
a,b defined by

xa · xb =
∑

c∈A

N c
a,bxc

are non-negative integers. There must be a distinguished index Ω ∈ A with
the following properties. It is required that the matrix

C = [Ca,b] = [NΩ
a,b]

satisfies C2 = I. Because 0 ≤ N c
a,b ∈ Z, either C = I or C must be an order

2 permutation matrix, that is, there is a permutation σ : A → A with σ2 = 1
and

Ca,b = δa,σ(b).

Write σ(a) = a∗ and call xa∗ the conjugate of xa. Use it to define the non-
negative integers

Na,b,c = N c∗

a,b

which, by commutativity and associativity of the algebra product, are com-
pletely symmetric in a, b and c. Using this we also find that xΩ is a multi-
plicative identity element in F and Ω∗ = Ω.

In this paper we are interested in the structure constants of fusion algebras
that are associated to affine Lie algebras.

3 Background and Notation for Finite Dimensional Lie Algebras

Now we will introduce notations and review some basic results needed later.
Let g be a finite dimensional simple Lie algebra of rank ℓ with Cartan matrix

3



A = [aij ] and Cartan subalgebra H. The simple roots and the fundamental
weights of g are linear functionals

α1, · · · , αℓ and λ1, · · · , λℓ,

respectively, in the dual space H∗. Let the integral weight lattice P be the
Z-span of the fundamental weights, and let

P+ = {n1λ1 + · · · + nℓλℓ | 0 ≤ n1, · · · , nℓ ∈ Z}

be the set of dominant integral weights of g, and let

θ =
ℓ∑

i=1

θiαi

be the highest root of g. The symmetric bilinear form (·, ·) on H∗ is determined
by

aij = 〈αi, αj〉 =
2(αi, αj)

(αj, αj)
, 1 ≤ i, j ≤ ℓ

and the normalization (θ, θ) = 2. The fundamental weights are determined by
the conditions 〈λi, αj〉 = δij for 1 ≤ i, j ≤ ℓ, and the special “Weyl vector”

ρ =
ℓ∑

i=1

λi

will play an important role in several formulas. It is useful to define

λ̌ =
2λ

(λ, λ)
for any 0 6= λ ∈ H∗,

so we can write (λi, α̌j) = δij and aij = (αi, α̌j). We may also express

θ =
ℓ∑

i=1

θ̌iα̌i so θ̌i =
θi(αi, αi)

2
.

The Weyl group W of g is defined to be the group of endomorphisms of H∗

generated by the simple reflections corresponding to the simple roots,

ri(λ) = λ − (λ, α̌i)αi, 1 ≤ i ≤ ℓ.

This is a finite group of isometries which preserve P . There is a partial order
defined on H∗ defined by

λ ≤ µ if and only if µ − λ =
ℓ∑

i=1

kiαi for some 0 ≤ ki ∈ Z.
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For λ ∈ P+ let V λ denote the finite dimensional irreducible g-module with
highest weight λ. It has the weight space decomposition V λ =

⊕
β∈H∗ V λ

β ,
where

V λ
β = {v ∈ V λ | h · v = β(h)v,∀h ∈ H}

is the β weight space of V λ. Of course, there are only finitely many β ∈ H∗

such that V λ
β is nonzero, and we denote by Πλ that finite set of such β. Since

dim(V λ
λ ) = 1, a nonzero highest weight vector vλ

λ ∈ V λ
λ is determined up to

a scalar. The dual space (V λ)∗ = Hom(V λ,C) is also an irreducible highest
weight g-module, called the contragredient module of V λ. The action of g on
(V λ)∗ is given by

(x · f)(v) = −f(x · v) for x ∈ g, f ∈ (V λ)∗, v ∈ V λ.

The highest weight of (V λ)∗ is denoted by λ∗, and equals the negative of
the lowest weight of V λ. For example, in the case when g is of type Aℓ, if
λ =

∑ℓ
i=1 niλi then λ∗ =

∑ℓ
i=1 nℓ+1−iλi.

On V λ with a chosen highest weight vector, vλ
λ ∈ V λ

λ , we have a positive
definite contravariant Hermitian form [14] (·, ·) : V λ × V λ → C determined
by the following conditions: (1) (vλ

λ, vλ
λ) = 1, (2) For any v, v′ ∈ V λ, and any

x ∈ g, we have (x ·v, v′) = −(v, x† ·v′), where the map x → x† is the Chevalley
involutive automorphism of g determined by its action on the generators

e
†
i = −fi, f

†
i = −ei, h

†
i = −hi, 1 ≤ i ≤ ℓ.

Note that for any v ∈ V λ
β , v′ ∈ V λ

β′ , we have

β(hi)(v, v′) = (hi · v, v′) = −(v,−hi · v
′) = β′(hi)(v, v′)

so 0 = (β − β′)(hi)(v, v′) for any Cartan generator hi. This means that if
β 6= β′ then (v, v′) = 0 so different weight spaces are orthogonal. Let Projλ

β :
V λ → V λ

β denote the orthogonal projection operator.

If V λ and V µ are two irreducible highest weight modules with chosen highest
weight vectors and positive definite contravariant Hermitian forms as above,
then we have a positive definite contravariant Hermitian form on the tensor
product V λ ⊗ V µ given by

(vλ
1 ⊗ v

µ
1 , vλ

2 ⊗ v
µ
2 ) = (vλ

1 , vλ
2 )(vµ

1 , v
µ
2 ).

If V ν is an irreducible submodule of V λ ⊗V µ then its orthogonal complement
(V ν)⊥ = {v ∈ V λ ⊗ V µ | (v, V ν) = 0} is clearly a g-submodule since

(x · v, V ν) = −(v, x† · V ν) = 0, for all x ∈ g, v ∈ (V ν)⊥.

This shows that when the tensor product V λ⊗V µ is decomposed into a direct
sum of irreducible g-modules, the distinct modules obtained are mutually
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orthogonal with respect to the contravariant Hermitian form. Let Proj
λ,µ
V ν :

V λ ⊗ V µ → V ν denote the orthogonal projection operator from the tensor
product to a particular irreducible submodule V ν .

We will use certain facts about the representation theory of the simple Lie
algebra g = sl2 of type A1 whose standard basis {e, f, h} has the brackets
[h, e] = 2e, [h, f ] = −2f and [e, f ] = h. An irreducible finite dimensional
sl2-module V λ is determined by its highest weight, the non-negative integer
λ(h) = m, so we write V λ = V (m). If v0 is a highest weight vector then a
basis of V (m) can be written as {vi | 0 ≤ i ≤ m} where vi = 1

i!
f iv0 and the

action of g is given by the formulas:

h · vi = (m − 2i)vi, f · vi = (i + 1)vi+1, e · vi = (m − i + 1)vi−1

for 0 ≤ i ≤ m with the understanding that vj = 0 for j outside that range.
For any integer p ≥ 0, we understand the operators ep and fp on V (m) to
mean p repetitions of the operators e and f , respectively. It is easy to see that
the contravariant form has values (vi, vj) = δi,j

(
m

i

)
, for 0 ≤ i 6= j ≤ m, so the

form is positive definite.

Lemma 3.1 Let g = sl2 and V (m) be the irreducible finite dimensional sl2-
module with highest integral weight m ≥ 0. Then for any integer p ≥ 1, with
respect to the positive definite contravariant Hermitian form on V (m), we have
an orthogonal direct sum decomposition

V (m) = ker(fp) ⊕ Im(ep).

Proof: From the explicit formulas for the action, it is clear that ker(fp) is
the subspace of the p lowest weight spaces with basis {vm−p+1, · · · , vm} and
that Im(ep) = (ker(fp))⊥ is the subspace of all other weight spaces with basis
{v0, · · · , vm−p}. 2

We now go back to the general case of any finite dimensional simple g. Let
V λ be an irreducible g-module, α any root of g, and let gα be the corre-
sponding subalgebra of g isomorphic to sl2 with standard basis {eα, fα, hα}.
The Chevalley involution acts on gα by e†α = −fα, f †

α = −eα and h†
α = −hα.

The complete reducibility of finite dimensional sl2-modules gives a direct sum
decomposition

V λ =
⊕

i

V λ
γi

(mi)

into irreducible gα-modules, where V λ
γi

(mi) has g-highest weight γi, and gα-
highest weight γi(hα) = mi. If V λ

γ1
(m1) is one of these, then its orthogonal

complement is clearly a gα-submodule by the same argument as given above
for the decomposition of a tensor product. It means that this decomposition
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is an orthogonal direct sum decomposition with respect to the contravariant
Hermitian form on V λ.

Lemma 3.2 Let V λ be an irreducible g-module, α any root of g, and gα be
the corresponding subalgebra of g isomorphic to sl2. Let β ∈ Πλ be any weight
of V λ. Then, for any integer p ≥ 0 such that p + 〈β, α〉 ≥ 0, we have

{v ∈ V λ
β | ep

α(v) = 0} = {v ∈ V λ
β | fp+〈β,α〉

α (v) = 0}.

Proof: The Weyl group reflection rα acts on the weights Πλ and rα(β) =
β − 〈β, α〉α. It is also well-known that the operator

Rα = (exp(fα))(exp((−eα))(exp(fα)) ∈ GL(V λ)

satisfies Rα(V λ
β ) = V λ

rα(β) for any weight β ∈ Πλ. It is clear from the definition
of Rα that it acts on each of the gα submodules in the decomposition of
V λ given in the paragraph above the lemma. For any 0 6= v ∈ V λ

β we have
0 6= Rα(v) ∈ V λ

rα(β). We can write v =
∑

i vi where vi ∈ V λ
γi

(mi), and ep
α(v) = 0

iff ep
α(vi) = 0 for each i, so we may assume v is in one such irreducible gα-

module. The condition ep
α(v) = 0 means v is in one of the top p weight spaces

of its irreducible gα-module. This is equivalent to saying that Rα(v) is in one
of the bottom p weight spaces, that is, fp

α(Rα(v)) = 0.

If 〈β, α〉 ≥ 0 then Rα(v) = cf 〈β,α〉
α (v) for some nonzero scalar c, which means

0 = fp
α(cf 〈β,α〉

α (v)) = cfp+〈β,α〉
α (v).

If 〈β, α〉 < 0 but p + 〈β, α〉 ≥ 0 then Rα(v) = ce−〈β,α〉
α (v) for some nonzero

scalar c which means 0 = fp
α(ce−〈β,α〉

α (v)) = dfp+〈β,α〉
α (v) for a nonzero scalar d.

2

If V is any finite dimensional vector space with a positive definite Hermitian
form and W is any subspace of V then W has an orthogonal complement
W⊥ = {v ∈ V | (v, w) = 0,∀w ∈ W} such that V = W ⊕ W⊥. Let PW : V →
W be the orthogonal projection of V onto W defined by PW (v) = w where
v = w + w′ is the unique expression for v ∈ V with w ∈ W and w′ ∈ W⊥.
If L : V → V is any linear transformation, there is a unique adjoint linear
transformation L† : V → V determined by the conditions

(L(v), v′) = (v, L†(v′)), for all v, v′ ∈ V.

We call L self-adjoint when L = L†. Note that any orthogonal projection map
is self-adjoint because if v1 = w1 + w′

1 and v2 = w2 + w′
2 for w1, w2 ∈ W and

w′
1, w

′
2 ∈ W⊥, then

(PW (v1), v2) = (w1, w2 + w′
2) = (w1, w2) = (w1 + w′

1, w2) = (v1, PW (v2))
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so P
†
W = PW . Also, it is clear that P 2

W = PW .

Finally, later we will need the following lemma.

Lemma 3.3 Let V = U1 ⊕ U2 be an orthogonal direct sum decomposition of
a finite dimensional vector space V with a positive definite Hermitian form,
and let W be any subspace of V . Then we have the orthogonal direct sum
decomposition of W :

W = PW (U1) ⊕ (W ∩ U2).

Proof: Let v ∈ W be in the orthogonal complement of PW (U1). This means
that for any u1 ∈ U1, we have

0 = (PW (u1), v) = (u1, P
†
W (v)) = (u1, PW (v)) = (u1, v)

which means v ∈ W ∩ U⊥
1 = W ∩ U2. 2

4 Notation for Affine Lie Algebras

Let
ĝ = g ⊗ C[t, t−1] ⊕ Cc ⊕ Cd

be the affine algebra constructed from g with derivation d = −t d
dt

adjoined as
usual, and with Cartan subalgebra

H = H ⊕ Cc ⊕ Cd.

The simple roots and the fundamental weights of ĝ are linear functionals

α0, α1, · · · , αℓ and Λ0,Λ1, · · · ,Λℓ,

respectively, in the dual space H∗. The simple roots of g form a basis of H∗

(as do the fundamental weights), and we identify them with linear functionals
in H∗ having the same values on H ⊆ H and being zero on c and d. Let c∗

and d∗ in H∗ be the functionals which are zero on H and which satisfy

c∗(c) = 1, c∗(d) = 0, d∗(c) = 0, d∗(d) = 1.

Extend the bilinear form (·, ·) to H∗ by letting

(c∗, H∗) = 0 = (d∗, H∗), (c∗, c∗) = 0 = (d∗, d∗), and (c∗, d∗) = 1.

Then α0 = d∗ − θ and

Λ0 = c∗, Λi = θi

(αi, αi)

2
c∗ + λi = θ̌i c∗ + λi, 1 ≤ i ≤ ℓ,
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are determined by the conditions 〈Λi, αj〉 = δij for 0 ≤ i, j ≤ ℓ. Let the integral

weight lattice P̂ be the Z-span of the fundamental weights, and let

P̂+ = {
ℓ∑

i=0

niΛi | 0 ≤ ni ∈ Z}

be the set of dominant integral weights of ĝ.

The affine Weyl group Ŵ of ĝ is the group of endomorphisms of H∗ generated
by the simple reflections corresponding to the simple roots,

ri(Λ) = Λ − (Λ, α̌i)αi, 0 ≤ i ≤ ℓ.

This is an infinite group of isometries which preserve P̂ . The canonical central
element, c ∈ ĝ acts on an irreducible ĝ-module as a scalar k, called the level of
the module. We will only discuss modules with highest weight Λ ∈ P̂+, which
are the “nicest” in that they have affine Weyl group symmetry and satisfy
the Weyl-Kac character formula. An irreducible highest weight ĝ-module is
uniquely determined by its highest weight

Λ =
ℓ∑

i=0

niΛi ∈ P̂+

and, if we define θ0 = 1 = θ̌0, then

k = Λ(c) =
ℓ∑

i=0

niΛi(c) =
ℓ∑

i=0

niθi

(αi, αi)

2
=

ℓ∑

i=0

niθ̌i.

For fixed k there are only finitely many Λ ∈ P̂+ with Λ(c) = k, and we denote
that finite set by P̂+

k . It is easy to see that Ŵ preserves the level k weights
{Λ ∈ P̂ | Λ(c) = k}. The affine hyperplane determined by the condition
Λ(c) = k can be projected onto H∗ and the corresponding action of Ŵ is such
that the simple reflections ri for 1 ≤ i ≤ ℓ act as they were defined originally
on H∗, as isometries generating the finite Weyl group W of g. But the new
affine reflection r0 acts as r0(λ) = λ−(λ, θ)θ+kθ = rθ(λ)+kθ, the composition
of reflection rθ and the translation by kθ, which is not an isometry on H∗.

Irreducible ĝ-modules V̂ Λ of level k ≥ 1 are indexed by P̂+
k , but we can also

index them by certain weights of g as follows. From the formulas above we
can write

Λ =
ℓ∑

i=0

niΛi = kc∗ +
ℓ∑

i=1

niλi.

So there is a bijection between P̂+
k and the set of weights λ =

∑ℓ
i=1 niλi such

that

k = n0 +
ℓ∑

i=1

niθi

(αi, αi)

2
= n0 +

ℓ∑

i=1

niθ̌i = n0 + 〈λ, θ〉.
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Since n0 ≥ 0, this is equivalent to the “level k condition”

〈λ, θ〉 =
ℓ∑

i=1

niθ̌i ≤ k.

Define the set

P+
k = {λ =

ℓ∑

i=1

niλi ∈ P+ | 〈λ, θ〉 ≤ k}

and let the index set A (as in the fusion algebra definition) be P+
k . Then we

see that irreducible modules on level k correspond to λ ∈ P+
k . Fix level k ≥ 1

and write the fusion algebra product (which has not been defined yet!)

[λ] · [µ] =
∑

ν∈P+
k

N
(k)ν
λ,µ [ν].

The distinguished identity element, [0], corresponds to Λ = kc∗, and for each

[λ] there is a distinguished conjugate [λ∗] such that N
(k)0
λ,µ = δµ,λ∗ . Knowing

N
(k)ν
λ,µ is equivalent to knowing the completely symmetric coefficients

N
(k)
λ,µ,ν = N

(k)ν∗

λ,µ .

Let F(g, k) denote this fusion algebra.

5 Tensor Product Decompositions

There is a close relationship between the product in fusion algebras asso-
ciated with an affine Kac-Moody algebra ĝ and tensor product decomposi-
tions of irreducible g-modules. Let V λ be the irreducible finite dimensional
g-submodule of V̂ Λ generated by a highest weight vector. In the special case
when Λ = kΛ0 = kc∗, that finite dimensional g-module is V 0, the one di-
mensional trivial g-module. Since g is semisimple, any finite dimensional g-
module is completely reducible. Therefore, we can write the tensor product of
irreducible g-modules

V λ ⊗ V µ =
∑

ν∈P+

Multνλ,µV
ν

as the direct sum of irreducible g-modules, including multiplicities. This de-
composition is independent of the level k and is part of the basic representation
theory of g. The fusion products [λ] · [µ] are obtained by a subtle truncation
of the above summation.
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The Racah-Speiser algorithm gives the formula

Multνλ,µ =
∑

w∈W

ǫ(w)Multλ(w(ν + ρ) − µ − ρ)

where W is the Weyl group of g, ǫ(w) = (−1)length(w) is the sign of w, the Weyl
vector ρ =

∑
λi is the sum of the fundamental weights of g, and Multλ(β) =

dim(V λ
β ) is the inner multiplicity of the weight β in V λ. Recall that Πλ =

{β ∈ H∗ | dim(V λ
β ) > 0} denotes the set of all weights of V λ. In fact, the only

weights ν for which Multνλ,µ may be nonzero are those of the form ν = β + µ

where β ∈ Πλ.

This algorithm assumes that you can already produce the weight diagram
of any irreducible module, V λ, so we should have discussed that first, but
in fact the special case of the Racah-Speiser algorithm when µ = 0 gives
a recursion for the inner multiplicities of V λ. Since V 0 is the trivial one-
dimensional module, V λ ⊗ V 0 = V λ, so Multνλ,0 = δλ,ν and therefore

0 =
∑

w∈W

ǫ(w)Multλ(w(ν + ρ) − ρ)

for ν 6= λ. One knows that Multλ(wλ) = 1 and Multλ(wν) = Multλ(ν) for
all w ∈ W , so the above formula implies that

Multλ(ν) = −
∑

1 6=w∈W

ǫ(w)Multλ(ν + ρ − wρ)

for ν 6= λ. Since ρ > wρ in the partial ordering on weights, this gives an
effective recursion for Multλ(ν).

In [2], [3] Feingold studied certain patterns which occur in the tensor product
decomposition of a fixed irreducible g-module, V λ, with all other modules V µ.
For fixed λ, as µ varies there are only a finite number of different patterns
of outer multiplicities which can occur, and there are sets of values for µ

for which the pattern is constant, called zones of stability for tensor product
decompositions. We have the following precise result from [3] about when a
particular weight β of V λ, reaches the zone of stability.

Theorem 5.1 Let λ, µ ∈ P+ and β ∈ Πλ be such that β + µ ∈ P+. Let

β − rβ,jαj, · · · , β, · · · β + qβ,jαj

be the αj weight string through β. If 〈µ, αj〉 ≥ qβ,j then

Mult
β+µ
λ,µ = Mult

β+µ+λj

λ,µ+λj
.
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Since 〈µ + λj, αj〉 = 〈µ, αj〉 + 1, it is clear that 〈µ, αj〉 ≥ qβ,j implies

Mult
β+µ
λ,µ = Mult

β+µ+mλj

λ,µ+mλj
for all m ≥ 1.

This result shows that for fixed λ ∈ P+ and fixed β ∈ Πλ, the tensor product
multiplicities Mult

β+µ
λ,µ have zones of stability as µ varies, and it is sufficient

to study the finite number of µ such that 〈µ, αj〉 ≤ qβ,j for 1 ≤ j ≤ ℓ.

There is another important result about tensor product coefficients which
played a role in [2], [3]. In 1977 Prof. Bertram Kostant drew the attention of
Feingold to the following beautiful result of Parthasarathy, Ranga Rao and
Varadarajan [16], which is here rewritten slightly.

Theorem 5.2 [16] Let λ, µ ∈ P+ and β ∈ Πλ be such that β + µ ∈ P+. Let
ℓ = rank(g) and let 0 6= ej ∈ gαj

be a root vector corresponding to the simple
root αj for 1 ≤ j ≤ ℓ. Then

Mult
β+µ
λ,µ = dim{v ∈ V λ

β | e
〈µ,αj〉+1
j v = 0, 1 ≤ j ≤ ℓ}.

6 The Frenkel-Zhu Theorem and its reformulation

Now let us turn to the Frenkel-Zhu fusion rule theorem for affine Kac-Moody
algebras. (Note that this is closely related to results of Gepner-Witten [13],
which appeared much earlier in the physics literature. Also, see Haisheng Li
[15].)

Theorem 6.1 [10] Let λ, µ, ν ∈ P+
k , and let 0 6= eθ ∈ gθ be a root vector of g

in the θ root space of g. Let vν
ν ∈ V ν be a highest weight vector and write

H′ = Homg(V
λ ⊗ V µ ⊗ V ν ,C).

Then the level k fusion coefficient N
(k)
λ,µ,ν, which is completely symmetric in λ,

µ and ν, equals the dimension of the vector space

FZk(λ, µ, ν) = {f ∈ H′ | f(e
k−〈ν,θ〉+1
θ V λ ⊗ V µ ⊗ vν

ν ) = 0}.

We now state the main result of this paper, the theorem, conjectured by
Walton, which is a blending of the PRV and FZ theorems, showing that the
FZ theorem is actually a beautiful generalization of the PRV theorem.

Theorem 6.2 For λ, µ ∈ P+
k , β ∈ Πλ such that β + µ ∈ P+

k , we have

12



N
(k) (β+µ)
λ,µ equals the dimension of the space

W+
k (λ, β, µ) = {v ∈ V λ

β | e
〈µ,αj〉+1
j v = 0, 1 ≤ j ≤ ℓ, and e

k−〈β+µ,θ〉+1
θ v = 0}.

In [20] the statement of the conjecture is slightly different from above, with

the condition e
k−〈β+µ,θ〉+1
θ v = 0 replaced by the condition f

k−〈µ,θ〉+1
θ v = 0. The

equivalence of these two conditions is precisely the content of Lemma 3.2.

Theorem 6.2 implies the following result, which tells the level k at which the
fusion coefficient associated with a single weight β ∈ Πλ equals the tensor
product multiplicity associated with that weight.

Corollary 6.3 Suppose λ, µ ∈ P+
k , and β ∈ Πλ is such that β + µ ∈ P+

k .
Let the θ weight string through β in Πλ be β − rθ, · · · , β, · · · , β + qθ. Then
k ≥ 〈µ, θ〉 + r implies N

(k) (β+µ)
λ,µ = Mult

β+µ
λ,µ .

Before starting the proof of the theorem, we will show how it reproduces the
well known fusion coefficients in the special case when g = sl2, where ℓ = 1,
θ = α1, and P+

k = {n1λ1 | n1 ∈ Z, 0 ≤ n1 ≤ k}. In this case we use the
notation [n1] instead of n1λ1, so V [n1] = V (n1) is the irreducible g-module
with highest weight [n1]. The weights of V [n1] are {β = [n1 − 2i] | 0 ≤ i ≤ n1}

and each weight space V
[n1]
[n1−2i] is one-dimensional. For 0 ≤ n1 ≤ n2 ∈ Z, the

tensor product decomposition

V [n1] ⊗ V [n2] =
n1⊕

i=0

V [n1+n2−2i]

is well-known. If [n1], [n2] ∈ P+
k then the fusion product corresponds to a

truncation of this tensor product, so that only terms [n1 +n2−2i] ∈ P+
k could

appear, with coefficients no larger than 1. Note that the following Corollary
6.4 says the truncation is somewhat stronger than that, requiring n1+n2−2i ≤
k− i. Since there is a symmetry between n1 and n2, it is not surprising to also
find the condition i ≤ n2 symmetric to the assumption i ≤ n1.

Corollary 6.4 For 0 ≤ n1, n2 ≤ k, 0 ≤ i ≤ n1 with 0 ≤ n1 − 2i + n2 ≤ k, the
sl2 fusion coefficient N

(k) [n1+n2−2i]
[n1],[n2] equals 1 if i ≤ n2 and n1 +n2 − 2i ≤ k− i,

zero otherwise.

Proof: For 1 ≤ i ≤ n1, the raising operator e1 = eθ sends V
[n1]
[n1−2i] isomorphi-

cally onto V
[n1]
[n1−2i+2], and kills the highest weight space V

[n1]
[n1]

. This means that

for v ∈ V
[n1]
[n1−2i] and p ≥ 0,

e
p+1
1 v = 0 iff n1 < n1 − 2i + 2(p + 1) iff i ≤ p.

13



The conditions on v in the Walton space

W+
k ([n1], [n1 − 2i], [n2]) = {v ∈ V

[n1]
[n1−2i] | en2+1

1 v = 0 and e
k−(n1+n2−2i)+1
1 v = 0}

are then i ≤ n2 and n1 + n2 − 2i ≤ k − i. When these are satisfied, we have

W+
k ([n1], [n1 − 2i], [n2]) = V

[n1]
[n1−2i]

so the sl2 fusion coefficient N
(k) [n1+n2−2i]
[n1],[n2] = 1, and otherwise, it is zero. 2

In order to prove Theorem 6.2 we must understand the connection between
the PRV theorem, the statement of the theorem and the FZ theorem. We
begin by rewriting the FZ theorem in a slightly different form. We can define
a g-module map

Φ : Hom(V λ ⊗ V µ, V ν∗

) → Hom(V λ ⊗ V µ ⊗ V ν ,C)

by
(Φf)(vλ ⊗ vµ ⊗ vν) = (f(vλ ⊗ vµ))(vν).

It is easy to check that this is a g-module map and an isomorphism. In general,
for V and W any two g-modules, Hom(V,W ) is a g-module under the action,
(x ·L)(v) = x ·(L(v))−L(x ·v) for any v ∈ V and any L ∈ Hom(V,W ). It may
be helpful to use the notations πV : g → End(V ), πW : g → End(W ), and π :
g → End(Hom(V,W )) to distinguish the representations of g on these three
spaces. Then the above equation is saying that π(x)(L) = πW (x)◦L−L◦πV (x).

We also have the definition of the space of g-module maps from V to W ,

Homg(V,W ) = {L ∈ Hom(V,W ) | π(x)(L) = 0,∀x ∈ g}

= {L ∈ Hom(V,W ) | πW (x) ◦ L = L ◦ πV (x),∀x ∈ g}.

If v ∈ Vβ is a weight vector of weight β, that is, for any h ∈ H, πV (h)v = β(h)v,
and L is any g-module map, then πW (h)L(v) = L(πV (h)v) = L(β(h)v) =
β(h)L(v) shows that L(Vβ) ⊆ Wβ. If ProjV

β : V → Vβ and ProjW
β : W → Wβ

are the orthogonal projection operators, then it is easy to see that L(ProjV
β (v)) =

ProjW
β (L(v)) for any v ∈ V .

Since Φ is a g-module isomorphism, it is clear that it restricts to an isomor-
phism

Φ : Homg(V
λ ⊗ V µ, V ν∗

) → Homg(V
λ ⊗ V µ ⊗ V ν ,C).

We wish to describe the preimage of the space FZk(λ, µ, ν) under Φ. Since Φ
is an isomorphism, f ∈ FZk(λ, µ, ν) is of the form Φg for a unique element
g ∈ Homg(V

λ ⊗ V µ, V ν∗

). The conditions on f mean that

(g(e
k−〈ν,θ〉+1
θ V λ ⊗ V µ))(vν

ν ) = 0.

14



This allows us to rewrite the FZ theorem as follows.

Theorem 6.5 [10] Let λ, µ, ν ∈ P+
k , and let 0 6= eθ ∈ gθ be a root vector of g

in the θ root space of g. Let vν
ν ∈ V ν be a highest weight vector and write

H = Homg(V
λ ⊗ V µ, V ν∗

).

Then the level k fusion coefficient N
(k)
λ,µ,ν equals the dimension of the space

FZ ′
k(λ, µ, ν) = {g ∈ H | g(e

k−〈ν,θ〉+1
θ V λ ⊗ V µ)(vν

ν ) = 0}. (6.1)

There is a natural isomorphism of g-modules

Ψ : Hom(V ∗,W ) → W ⊗ V (6.2)

which is defined as follows. For any L ∈ Hom(V ∗,W ),

Ψ(L) =
d∑

j=1

L(v∗
j ) ⊗ vj

where d = dim(V ) = dim(V ∗), {v1, · · · , vd} is any basis of V and {v∗
1, · · · , v∗

d}
is the dual basis of V ∗, that is, the basis such that v∗

i (vj) = δij. The inverse
map sends a basic tensor w ⊗ v ∈ W ⊗ V to the element in Hom(V ∗,W )
which sends any f ∈ V ∗ to f(v)w ∈ W . We will always choose the basis of V

to consist of weight vectors, and if vj has weight µj , so that for any h ∈ H,
πV (h)vj = µj(h)vj, then it is easy to see that the weight of the dual vector v∗

j

is −µj. Namely, by the definition of the representation of g on the dual space
V ∗, for 1 ≤ i ≤ d we have

(πV ∗(h)v∗
j )(vi) = −v∗

j (πV (h)vi) = −v∗
j (µi(h)vi) = −µi(h)v∗

j (vi)

= −µi(h)δij = −µj(h)δij = −µj(h)v∗
j (vi)

which says that πV ∗(h)v∗
j = −µj(h)v∗

j . So Πλ∗

= −Πλ. This means that a
highest weight vector vν

ν ∈ V ν
ν has a dual lowest weight vector vν∗

−ν ∈ V ν∗

−ν , and
all other weight vectors of V ν∗

with weights above −ν are zero on vν
ν . In other

words, with respect to the positive definite Hermitian form on the irreducible
module V ν∗

, the orthogonal complement of the lowest weight space V ν∗

−ν is the
subspace of linear functionals in V ν∗

that send vν
ν to 0. We now see that

FZ ′
k(λ, µ, ν) = {g ∈ H | g(e

k−〈ν,θ〉+1
θ V λ ⊗ V µ) ∈ (V ν∗

−ν)
⊥}. (6.3)

For any g ∈ H we know that Im(g) is a submodule of V ν∗

, so if g 6= 0 then g is
surjective. Also, g sends weight vectors to weight vectors of the same weight,
and g sends highest (resp., lowest) weight vectors to highest (resp., lowest)

15



weight vectors. V ν∗

has a one dimensional highest weight space in which we
have chosen a basis vector vν∗

ν∗ ∈ V ν∗

ν∗ . V ν∗

also has a one dimensional lowest
weight space in which we have chosen a basis vector vν∗

−ν ∈ V ν∗

−ν . The tensor
product V λ ⊗ V µ decomposes into the direct sum of irreducible modules, but
g must send any highest (resp., lowest) weight vector whose weight is not ν∗

(resp., not −ν) to zero, so it sends all irreducible components whose highest
weight is not ν∗ to zero. The dimension of the space of highest (resp., lowest)
weight vectors in V λ ⊗ V µ of weight ν∗ (resp., −ν) is the tensor product
multiplicity M = Multν

∗

λ,µ, so we may choose a basis {u1, · · · , uM} of that
HWV space U+ (resp., LWV space U−) and determine gi ∈ H uniquely by
the conditions gi(uj) = δi,jv

ν∗

ν∗ (resp., gi(uj) = δi,jv
ν∗

−ν) for 1 ≤ i, j ≤ M . Then
{g1, · · · , gM} is a basis of H. Let us denote by U(g) the universal enveloping
algebra of g. It is clear that gi takes the submodule U(g)ui isomorphically to
V ν∗

and sends all other irreducible submodules U(g)uj, j 6= i, of the tensor
product to zero, so it is essentially an orthogonal projection from the tensor
product to one of its components followed by an isomorphism. Let Proj

λ,µ
U+

be the orthogonal projection from V λ ⊗ V µ to the subspace of highest weight
vectors of weight ν∗, and let Proj

λ,µ
U− be the orthogonal projection from V λ⊗V µ

to the subspace of lowest weight vectors of weight −ν. Then for any v ∈
V λ ⊗V µ, write v = u+ v′ + v′′ where u = Proj

λ,µ
U−(v) ∈ U−, v′ is of weight −ν

but is orthogonal to U− so is not a lowest weight vector and must be a sum of
vectors from irreducible components whose highest weights are not ν∗, and v′′

is a sum of vectors of weights not −ν. Then g(v) = g(u) + g(v′) + g(v′′) with
g(u) ∈ V ν∗

−ν , and g(v′) = 0 and g(v′′) is a sum of vectors of weights not −ν, so

Projν∗

−ν(g(v)) = g(u) = g(Proj
λ,µ
U−(v)). A similar argument applies to U+, so

we have shown that for any g ∈ H we have

g ◦ Proj
λ,µ
U+ = Projν∗

ν∗ ◦ g , (6.4)

g ◦ Proj
λ,µ
U− = Projν∗

−ν ◦ g. (6.5)

But this means that we can rewrite the Frenkel-Zhu space in (6.3) as

FZ ′
k(λ, µ, ν) = {g ∈ H | Projν∗

−νg(e
k−〈ν,θ〉+1
θ V λ ⊗ V µ) = 0} (6.6)

= {g ∈ H | g(Proj
λ,µ
U−(e

k−〈ν,θ〉+1
θ V λ ⊗ V µ)) = 0}. (6.7)

7 Review of the proof of the PRV theorem

Now we will review the proof of the PRV theorem and see if it allows us to find
an isomorphism between the Frenkel-Zhu space FZ ′

k(λ, µ, ν) and the Walton
space W+

k (λ, β, µ) when ν∗ = β + µ.

In the proof of the PRV theorem one looks at the g-module V = Hom(V µ∗

, V λ),
where π : g → End(V ) denotes the representation. As noted above (see eq.
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(6.2)), V ∼= V λ ⊗ V µ, and this isomorphism is given by the map Ψ which
sends irreducible components in V to isomorphic irreducible components in
V λ ⊗ V µ. The proof begins by considering the subspace of all lowest weight
vectors (LWVs) in V ,

U = {L ∈ V | π(fi)L = 0, 1 ≤ i ≤ ℓ}

where ℓ = rank(g) and ei, fi, hi are the generators of g with the usual Serre
relations. Then

L ∈ U iff πλ(fi) ◦ L = L ◦ πµ∗(fi), for 1 ≤ i ≤ ℓ.

It is clear that U is invariant under the operators π(hj), so it has a weight
space decomposition

U =
r⊕

m=1

Um

where Um = {L ∈ U | π(h)L = −νm(h)L, ∀h ∈ H} is the −νm-weight space,
−ν1, · · · ,−νr are the distinct lowest weights of irreducible components in V

whose corresponding highest weights are ν∗
1 , · · · , ν∗

r . Furthermore,

dim(Um) = Mult
ν∗

m

λ,µ

is the multiplicity of V ν∗

m in the tensor product V λ ⊗ V µ because the inde-
pendent vectors in Um each generate a distinct irreducible component in V .
Let v∗

1 = v
µ∗

µ∗ be a highest weight vector (HWV) in V µ∗

of weight µ∗ dual to
v1 = v

µ
−µ∗ a LWV in V µ of weight −µ∗. The key step in the proof of the PRV

theorem is the following lemma.

Lemma 7.1 Define the linear map ξ : U → V λ by

ξ(L) = L(v∗
1), ∀L ∈ U.

Then ξ is injective and the range of ξ equals

V ′ = {v ∈ V λ | πλ(fi)
〈µ∗,αi〉+1v = 0, 1 ≤ i ≤ ℓ}.

Proof: Because the highest weight vector v∗
1 ∈ V µ∗

satisfies

πµ∗(fi)
〈µ∗,αi〉+1v∗

1 = 0

for 1 ≤ i ≤ ℓ, we have

πλ(fi)
〈µ∗,αi〉+1L(v∗

1) = L(πµ∗(fi)
〈µ∗,αi〉+1v∗

1) = 0

so ξ(U) ⊆ V ′. Let g = g− ⊕ H ⊕ g+ be the triangular decomposition of g,
where g− is the Lie subalgebra of g generated by the negative root vectors,
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that is, the span of f1, · · · , fℓ and all their multibrackets, and similarly g+ is
generated by the positive root vectors. Let U(g) be the universal enveloping
algebra of g and extend the meaning of any representation of g to include the
representation of the associative algebra U(g). We may also have use for the
universal enveloping algebras U(g−) and U(g+). It is well known that U(g−)
is spanned by all products of the form y = fi1 · · · fis for any s ≥ 0 and any
1 ≤ ij ≤ ℓ for 1 ≤ j ≤ s, and that V µ∗

= U(g−)v∗
1 is spanned by all vectors of

the form

πµ∗(y)v∗
1 = πµ∗(fi1) · · · πµ∗(fis)v

∗
1

for y as above. If L(v∗
1) = 0 for some L ∈ U then we get

0 = πλ(y)L(v∗
1) = L(πµ∗(y)v∗

1)

showing that L = 0 and therefore ξ is injective. Let v ∈ V ′ be arbitrary and
try to define L ∈ V by

L(πµ∗(y)v∗
1) = πλ(y)v

for any y ∈ U(g−). If πµ∗(y)v∗
1 = 0 then it is known that y can be written

y =
ℓ∑

i=1

yi f
〈µ∗,αi〉+1
i

for some yi ∈ U(g−), so πλ(y)v = 0. This means that L is well-defined on
πµ∗(U(g−))v∗

1 = V µ∗

. By the definition of the linear map L we have

(πλ(fi) ◦ L)(πµ∗(y)v∗
1) = πλ(fiy)v = L(πµ∗(fiy)v∗

1) = (L ◦ πµ∗(fi))(πµ∗(y)v∗
1)

which shows that πλ(fi) ◦ L = L ◦ πµ∗(fi) so L ∈ U . This completes the
argument that ξ is an isomorphism from U to V ′. 2

Now suppose that L ∈ Um for some 1 ≤ m ≤ r, so π(h)L = −νm(h)L for
any h ∈ H. But π(h)L = πλ(h) ◦ L − L ◦ πµ∗(h) so ξ(L) ∈ V λ

µ∗−νm
has weight

µ∗ − νm because

πλ(h)(Lv∗
1) = L(πµ∗(h)v∗

1) − νm(h)Lv∗
1 = L(µ∗(h)v∗

1) − νm(h)Lv∗
1

= (µ∗ − νm)(h)Lv∗
1.

This shows that ξ provides an isomorphism between each subspace Um and

V ′
µ∗−νm

= {v ∈ V λ
µ∗−νm

| πλ(fi)
〈µ∗,αi〉+1v = 0, 1 ≤ i ≤ ℓ}.

The PRV notation for this subspace is V −(λ;µ∗ − νm, µ∗) and their result is
the formula for the tensor product multiplicity

Mult
ν∗

m

λ,µ = dim(V −(λ;µ∗ − νm, µ∗)).
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Replacing fi by ei in the definition of the space V −(λ; γ, µ∗) one gets another
space,

V +(λ; γ, µ∗) = {v ∈ V λ
γ | πλ(ei)

〈µ∗,αi〉+1v = 0, 1 ≤ i ≤ ℓ}.

In the proof of the PRV theorem it is shown that

dim(V −(λ; γ, µ∗)) = dim(V +(λ;−γ∗, µ))

by using an automorphism coming from the longest element of the Weyl group,
W . Then the final result of the PRV theorem is that

Mult
ν∗

m

λ,µ = dim(V +(λ; ν∗
m − µ, µ)).

To understand this we must discuss the longest element and a little bit of the
theory of Lie groups. First it is necessary to know that the elements of the Weyl
group are in one-to-one correspondence with the Weyl chambers in H∗. The
dominant chamber, P+, corresponding to the identity element in W , is also
associated with a choice of simple roots, ∆ = {α1, · · · , αℓ}, or with a choice
of positive roots, R+, by the condition λ ∈ P+ iff 〈λ, αi〉 ≥ 0, for 1 ≤ i ≤ ℓ.
The opposite chamber −P+ defined by the conditions 〈λ, αi〉 ≤ 0 is related
to P+ by a unique element w0 ∈ W such that w0(P

+) = −P+, which means
w0(∆) = −∆, and w0(R

+) = R−. This is the longest element whose length is
the number of positive roots and whose order is 2. For example, in type A2,
w0 = r1r2r1 = rθ, but in type B2, w0 = r1r2r1r2 6= rθ. Since w0(∆) = −∆,
there is an order 2 permutation σ ∈ Sℓ such that w0(αi) = −ασ(i) for 1 ≤ i ≤ ℓ.
If ν ∈ P+ then w0(ν) = −ν∗ is the lowest weight in Πν , so we have

〈ν, αi〉 = 〈w0(ν), w0(αi)〉 = 〈−ν∗,−ασ(i)〉 = 〈ν∗, ασ(i)〉.

We use ν∗ = −w0(ν) to extend the definition of dual weight to any ν ∈ H∗.
Note that θ is the highest weight of the adjoint representation and −θ =
w0(θ) = −θ∗ is the lowest weight, so θ∗ = θ. Therefore, for any ν ∈ H∗ we
have

〈ν, θ〉 = 〈w0(ν), w0(θ)〉 = 〈−ν∗,−θ〉 = 〈ν∗, θ〉.

We say πV : g → End(V ) is an integrable representation when πV (H) acts
diagonalizably on V and all πV (ei) and πV (fi) are locally nilpotent on V . This
is certainly true for V any finite dimensional g-module, including the adjoint
representation, g itself, so that exp(πV (x)) ∈ GL(V ) and exp(ad(x)) ∈ Aut(g)
for all x = ei, x = fi and x = h ∈ H. It is not hard to check that

(exp(πV (x))) πV (y) (exp(πV (x)))−1 = πV (exp(ad(x))y)

for all y ∈ g. Of particular interest are the elements

rπV

i = (exp(πV (fi)))(exp(πV (−ei)))(exp(πV (fi))) ∈ GL(V )
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for 1 ≤ i ≤ ℓ. It is known [14] that rπV

i (Vµ) = Vri(µ) for any weight µ of V ,
and rad

i (gα) = gri(α) for any root α of g. If the longest element is written as
a product of simple reflections, w0 = ri1 · · · ris , then we have corresponding
elements

wπV

0 = rπV

i1
· · · rπV

is
∈ GL(V ) and wad

0 = rad
i1
· · · rad

is
∈ Aut(g)

such that
wπV

0 ◦ πV (y) ◦ (wπV

0 )−1 = πV (wad
0 (y))

so using y = h ∈ H we can get

wπV

0 (Vµ) = Vw0(µ) and wad
0 (gα) = gw0(α).

In particular, this means that for 1 ≤ i ≤ ℓ, we have

wad
0 (ei) ∈ gw0(αi) = g−ασ(i)

so wad
0 (ei) = cifσ(i) for some 0 6= ci ∈ C and wad

0 (fi) = c−1
i eσ(i). Then we have

wπV

0 ◦ πV (fi) = πV (wad
0 (fi)) ◦ wπV

0 = c−1
i πV (eσ(i)) ◦ wπV

0

and for any power, pi,

wπV

0 ◦ πV (fi)
pi = c

−pi

i πV (eσ(i))
pi ◦ wπV

0 .

Using pi = 〈µ∗, αi〉+1 and V = V λ, we see that wπV

0 provides an isomorphism
between

V −(λ; γ, µ∗) = {v ∈ V λ
γ | πλ(fi)

〈µ∗,αi〉+1v = 0, 1 ≤ i ≤ ℓ}

and
V +(λ;−γ∗, µ) = {v ∈ V λ

−γ∗ | πλ(ei)
〈µ,αi〉+1v = 0, 1 ≤ i ≤ ℓ}.

Since wad
0 (gθ) = g−θ we also have wad

0 (eθ) = c fθ for some 0 6= c ∈ C and for
any power, p,

wπV

0 ◦ πV (fθ)
p = c−p πV (eθ)

p ◦ wπV

0 .

Applying w
πλ

0 to the space W+
k (λ, β, µ) in Theorem 6.2 gives the isomorphic

space

W−
k (λ,−β∗, µ∗) =

{v ∈ V λ
−β∗ | πλ(fj)

〈µ∗,αj〉+1v = 0, 1 ≤ j ≤ ℓ, and πλ(fθ)
k−〈β+µ,θ〉+1v = 0}.

(7.1)

It is clear that W−
k (λ,−β∗, µ∗) is a subspace of V −(λ;−β∗, µ∗),

W−
k (λ,−β∗, µ∗) = {v ∈ V −(λ;−β∗, µ∗) | πλ(fθ)

k−〈β+µ,θ〉+1v = 0}

which corresponds by ξ to a subpace of U . Our next step is to find the condition
on L ∈ U which corresponds to this subspace.
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8 Conclusion of the proof

The root vector fθ ∈ g−θ can be expressed as some multibracket of the simple
root vectors f1, · · · , fℓ, so L ∈ U implies that π(fθ)L = 0 so πλ(fθ) ◦ L =
L ◦ πµ∗(fθ). Furthermore, since −θ is the lowest root of g, [fθ, fi] = 0 for
1 ≤ i ≤ ℓ, so in any representation of g, the representatives of these root
vectors commute. For any p ≥ 1 define the subspace of V ′

V ′(p) = {v ∈ V λ | πλ(fi)
〈µ∗,αi〉+1v = 0, 1 ≤ i ≤ ℓ, πλ(fθ)

pv = 0}.

Then for any L ∈ U , ξ(L) ∈ V ′(p) iff πλ(fθ)
pL(vµ∗

µ∗ ) = 0 iff πλ(y)πλ(fθ)
pL(vµ∗

µ∗ ) =
0 for all y ∈ U(g−). But since πλ(y) commutes with πλ(fθ), and since
πλ(y)L(vµ∗

µ∗ ) = L(πµ∗(y)vµ∗

µ∗ ) and U(g−)vµ∗

µ∗ = V µ∗

, so

ξ(L) ∈ V ′(p) iff πλ(fθ)
pL(V µ∗

) = 0 iff L(V µ∗

) ⊆ Ker(πλ(fθ)
p).

Then ξ provides an isomorphism from the subspace

U(p) = {L ∈ U | πλ(fθ)
pL(V µ∗

) = 0} = {L ∈ U | L(V µ∗

) ⊆ Ker(πλ(fθ)
p)}

to V ′(p). Let −ν be one of the weights −νm which occur in the weight space
decomposition of U , corresponding to a highest weight module V ν∗

where
ν∗ = β + µ so 〈β + µ, θ〉 = 〈ν∗, θ〉 = 〈ν, θ〉. We have seen that ξ provides an
isomorphism between U−ν and V ′

µ∗−ν = V −(λ;µ∗ − ν, µ∗) = V −(λ;−β∗, µ∗),
so it also provides an isomorphism between corresponding weight spaces

U−ν(p) = {L ∈ U−ν | πλ(fθ)
pL(V µ∗

) = 0}

= {L ∈ U−ν | L(V µ∗

) ⊆ Ker(πλ(fθ)
p)} (8.1)

and

V ′
−β∗(p) = {v ∈ V λ

−β∗ | πλ(fi)
〈µ∗,αi〉+1v = 0, 1 ≤ i ≤ ℓ, πλ(fθ)

pv = 0},

which will equal the Walton space W−
k (λ,−β∗, µ∗) when p = k − 〈ν, θ〉 + 1.

Lemma 8.1 For any integer p ≥ 1 we have

Ψ(U−ν(p)) = (Ker(πλ(fθ)
p) ⊗ V µ) ∩ Ψ(U−ν)

and we have the orthogonal direct sum decomposition

Ψ(U−ν) = Ψ(U−ν(p)) ⊕ Proj
λ,µ
Ψ(U−ν)(Im(πλ(eθ)

p) ⊗ V µ).

Proof: Apply the isomorphism Ψ to U−ν(p) to get the subspace

Ψ(U−ν(p)) = {Ψ(L) ∈ V λ ⊗ V µ | L ∈ U−ν(p)}

21



of certain lowest weight vectors of weight −ν in V λ⊗V µ. Recall the definition

Ψ(L) =
d∑

j=1

L(v∗
j ) ⊗ vj

where d = dim(V µ) = dim(V µ∗

), {v1, · · · , vd} is a basis of V µ and {v∗
1, · · · , v∗

d}
is the dual basis of V µ∗

. Then we see that

Ψ(L) ∈ Ker(πλ(fθ)
p) ⊗ V µ, for all L ∈ U−ν(p)

since L(v∗
j ) ∈ Ker(πλ(fθ)

p) for 1 ≤ j ≤ d. Of course, Ψ(L) ∈ Ψ(U−ν), so
we get containment in one direction. Now suppose that Ψ(L) ∈ Ψ(U−ν) and
Ψ(L) ∈ Ker(πλ(fθ)

p) ⊗ V µ, so for 1 ≤ j ≤ d we have L(v∗
j ) ∈ Ker(πλ(fθ)

p),
giving L ∈ U−ν(p) so Ψ(L) ∈ Ψ(U−ν(p)).

Let gθ
∼= sl2 be the subalgebra with basis eθ, fθ and hθ = [eθ, fθ]. As men-

tioned in Section 3, V λ has a decomposition into the orthogonal direct sum of
irreducible gθ-modules,

V λ =
⊕

i

V λ
γi

(mi)

where dim(V λ
γi

(mi)) = mi + 1 and the highest weight of V λ
γi

(mi) is γi ∈ Πλ so
mi = γi(hθ). Also recall from Section 3 that from the representation theory of
sl2, on each irreducible component we have the orthogonal decomposition

V λ
γi

(mi) = Ker(πλ(fθ)
p) ⊕ Im(πλ(eθ)

p)

into the p lowest hθ weight spaces and the rest. So we also get the orthogonal
decomposition

V λ = Ker(πλ(fθ)
p) ⊕ Im(πλ(eθ)

p).

Of course, in the first equation above we mean the kernel and image of those
operators restricted to each irreducible component. This gives an orthogonal
decomposition

V λ ⊗ V µ = Ker(πλ(fθ)
p) ⊗ V µ ⊕ Im(πλ(eθ)

p) ⊗ V µ.

Lemma 3.3 applied to this decomposition of the tensor product gives the
orthogonal direct sum decomposition of the subspace Ψ(U−ν) as stated. 2

Let {Ψ(L1), · · · ,Ψ(Ldp
)} be a basis of the first summand Ψ(U−ν(p)) in the

above decomposition of Ψ(U−ν), and let {Ψ(Ldp+1), · · · ,Ψ(LM)} be a basis of
the second summand, where M = Multν

∗

λ,µ = dim(U−ν) = dim(Ψ(U−ν)). Then
there is a basis, {g1, · · · , gdp

, · · · , gM} of H = Homg(V
λ⊗V µ, V ν∗

) determined
by the conditions gi(Ψ(Lj)) = δi,jv

ν∗

−ν for vν∗

−ν a lowest weight vector in V ν∗

.
The subspace

H(Kp) = {g ∈ H | g(Ψ(U−ν(p))) = 0}
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of elements of H that vanish on the first summand, has basis {gdp+1, · · · , gM}
and the subspace

H(Ip) = {g ∈ H | g(Proj
λ,µ
Ψ(U−ν)(Im(πλ(eθ)

p) ⊗ V µ)) = 0}

of elements of H that vanish on the second summand, has basis {g1, · · · , gdp
}

so dp = dim(H(Ip)). Remember that the dimension of the Walton space
W−

k (λ,−β∗, µ∗) is dp when p = k − 〈ν, θ〉 + 1. But in that case, H(Ip) equals
the Frenkel-Zhu space

FZ ′
k(λ, µ, ν) = {g ∈ H | g(Proj

λ,µ
Ψ(U−ν)(e

k−〈ν,θ〉+1
θ V λ ⊗ V µ)) = 0}

so we have completed the proof of Theorem 6.2.
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