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SOME APPLICATIONS OF VERTEX OPERATORS TO
KAC-MOODY ALGEBRAS

Alex J. momnno_m+

L INTRODUCTION

This is an account of some of my recent work [2,3] which
has involved applications of vertex operators to Kac-Moody Lie theory.
For V the basic >M~vwao;=_w in the principal realization given by
Lepowsky and Wilson [13J, one may use vertex operators to describe
the decomposition V & V = S(V) @ A(V) of V @ V into symmetric
tensors S(V) and antisymmetric tensors A(V). This turns out to be
precisely the decomposition of V @ V into two "strings” of level two
standard >M_V|ch£ou which I found in C1]. This result has a
remarkable application to the construction of the hyperbolic algebra F
with Dynkin diagram | ==——= 9 .

In [2] Frenkel and I gave a Z-graded construction of F such
that the 0, 1 and -1 graded pieces (levels) were >M: extended by

the derivation d, V, and its contragredient module <u. respectively.

The higher levels were graded pieces of quotients of free Lie algebras
by a graded ideal. For level 2 these were precisely determined to be
V A V = A(V) modulo a single irreducible component (the top module
of the antisymmetric string), and similarly for level -2 using vV oin
place of V. This gave the first precise formula for "higher level”
hyperbolic root multiplicities beyond the general formula of Moody and
Berman [17]. These multiplicities have a remarkable relationship with
the values of the classical partition function which has led to
conjectures  concerning . upper bounds for all hyperbolic  root
multiplicities C6]. Different ways of applying vertex operators to the
construction of hyperbolic algebras will be discussed by others in this
workshop, but, as of this writing, none has yet explained those root

multiplicities for F which are known precisely.

' Partially supported by the National Science Foundation through the
Mathematical Sciences Research Institute

Vertex Operators in Mathematics and Physics - Proceedings of a
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Sciences Research Institute #3, Springer-Verlag, 1984.
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In order to extend the results mentioned above to the

hyperbolic algebra with Dynkin diagram =i ® 1

C
have recently studied the decomposition of V @ V where V is the

basic >M~vaaom£m. The techniques of [1,2] give this
decomposition into two strings of level 2 standard modules with outer
multiplicities, remarkably, equal to the coefficients of the
Rogers-Ramanujan identities, From numerical data sent to me by V.G.
Kac, it appears that the second level of this hyperbolic algebra
consists of those irreducible components of V @ V whose highest
weights have odd principal degree > 1 relative to 1 @ 1. One expects
this to follow as for the algebra F from the decomposition V @ V =
S{V) @ A(V) and from the identification of A(V) modulo one irreducible
component with the second level of the Z-graded hyperbolic algebra.
The point of interest to those at this workshop is how the vertex
operator techniques used to find V @ V = S(V) @ A(V) in the >M:
case can be modified for the >m~v case. The proof in the >M:
case depended on the introduction of an auxiliary vertex operator on
V ® V with components which form a Clifford algebra, which commute
with the action of the principal Heisenberg subalgebra on V ® V, and
which anticommute with the action of the ‘real root vectors .o: vVev.
In the case of >mmv the components of the analogous auxiliary vertex
operator have much more complicated relations with each other and
with the real root vector action on V @ V. In fact, current joint
work with J. Lepowsky shows that one is dealing here with Z-algebras
£15-161. One may hope to generalize these results to all affine
algebras and appiy the theory of Z-algebras to the decomposition of
more general tensor products.

In [3] Frenkel and I were able to construct highest weight
representations for all "classical” “affine algebras and superalgebras.
These consist of the orthogonal series (D$'!’ w‘m:‘ U.Mwwr the

h ’

symplectic series AOM:. wﬁzc,t. OS:?&F and the general linear
. (1) (2) (2) (2) (4)

series ;blu. >Nh.;_ >uh » ANH022-1), AY™(0,22)). The

representations are given by certain "normally ordered” quadratic

expressions whose linear factors generate an infinite-dimensional
Clifford or Weyl algebra. This provides representations of the affine

algebras on exterior or symmetric algebras of polynomials, respectively,
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in perfect analogy with the spinor :;. whv and oscillator Ao.a.
B(0,2)) representations. The linear generators from the Clifford or
Weyl algebra play the role in quantum mechanics of creation and
annihilation operators for particles obeying Fermi or Bose statistics,
respectively. We, therefore, named the corresponding constructions of
affine algebras as fermionic or bosonic. The orthogonal series then
has fermonic representations which are the standard representations
previously called spinor representations [4,5,9]. The symplectic
series has bosonic representations which are non-standard highest

. 1)
weight representations whose existence, at least for OM

, was
independently noticed by H. Garland and M. Primc. For the general
linear series one has both fermionic (standard) and bosonic
{non-standard) representations. For the orthogonal series the fermionic
{spinor) construction was shown by Frenkel [5J to be isomorphic to
the vertex construction, thus interpreting the boson-fermion
correspondence of physics in the framework of Kac-Moody theory.
The fermions are the linear Clifford generators and the bosons are the
normally ordered quadratic elements which form a Lie algebra. Both
are realized as vertex operators. Changing the Clifford mo:owwnozano
Weyl generators gives the bosonic (oscillator) construction of the
symplectic series, but one no longer has an alternative description
using vertex operators. A vertex construction does exist for type A
affine algebras, and for type >mww~ it was instrumental in discovering
the way to construct the general linear series by normally ordered

quadratic elements with a "twisted” generating function,

2. A TENSOR PRODUCT DECOMPOSITION AND APPLICATIONS
Let & be the infinite-dimensional Heisenberg algebra with

generators h(n), n € 2Z+1, and where

(2.3) Chim), bn)] = m3 .

Let V be the symmetric algebra of polynomials in Ch(-n) | 0 < n €
22+13. Then V is an irreducible g-module. Define the vertex
operator
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: k -k
(2.2) X(2h2) = - § expl Z § 2ht-k) exp( - 2 2hik)

where the summations are over 0 < k € 22+ {as they are

throughout this section unless otherwise indicated). Let

(2.3) X(2h2) = I X (2h) 27"

n€Z
define the -homogeneous components stNE of X(2h,z). Then the
operators quNE for n € Z are well defined on V and satisfy
commutation relations with each other and with & so as to provide

the basic representation of the affine Kac-Moody algebra g of type

>M D in its principal realization [13J. In particular, we have
(2.4) Chik), szmEu =2 x=+r§5. k € 22+1, n € 2,
(2.5) nstmE. stmzu =

LT if m,n €22

|=.m_u...= if m,n € 22Z+1

2h(m+n) if m € 22+1, n € 22.

One way of doing such computations with vertex operators is to
use contour integrals and normal ordering lemmas. For example, we

define the normally ordered product of two vertex operators

k k
(26) : X(2h2)X(2hw): = 7 expl £ 2h(-K)) exp( T § 2h(-k)
.k -k
" expl - ¥ =—— 2h(k)) exp(- = .mll 2hik))

s0 that all the annhilation operators are applied first, and then all the

creation operators are applied. Then we have the following.

Lemma 1. For Izl > lwi,

X(2h,2)X(2h,w) = (22¥)2: X(2h,2)X(2h,w)-.

z+w
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Proof. Let X(2h,2) = - § exp(Alexp(B) and X(2hw) = - } exp(Clexp(D),

then

( k

w/z)" = 2 logl3=¥) if 1zl > lwl.
—n N....t

(BCl=-42%
k

This scalar commutes with the operators A, B, C, D, so by the

Baker-Campbell-Hausdorff formula,

exp(B)exp(C) = exp(Clexp(B)exp(LB,CJ).

roacm.mgwmimno nwﬁ_ ._.G muvmscwu.:wa 4_, c mnvmu.‘;osiw
can compute the bracket

2.7 [X,(2h), X (2h)] =

X@2h,z2) 21 dz, _. X(zhw) w1 dw 3

C C

= % ¢ % X(2h,z) X(2h,w) 2™ ! dz - % X(2h,w) X(2h,z)
OW Ox OH
1

1

21 gz ) W e

.. ._, ._, ANHM mu xﬁms.vinwr.tv" N__T_nutl—at
ONu ON/OH z+w

where the contours are circles about the origin having radii satisfying
r < Ry < R. The only residue of the inner integral coming from the
pole z = -w is

d 2, . =
(2.8) — {(z-w)}“: X(2h,z} X(2h,w): vNI

dz

=W

)"wPm - S wX2h(-k) )
kE22Z2+1

so one gets
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(2.9) .F =)™ (m - xmﬁisxwz-z y witn=l gy
R
1

(-1™" m 5 if m+n € 22

_ m,-n

(=1)™*! 2n(m+n)  1f men € 22+1.

Now consider the tensor product V @ V. Denote by rrav the
action of & on the first tensor factor and by rm?: the action on the
second factor. Then the action of g on V @ V is given by rrav +
_..m?;. m € 22+1, stNrHv + szmrwv. n € Z. The central element
which acted as the scalar 1 on V acts as 2 on V ® V. This is just
the realization of g as the diagonal subalgebra of mH b4 &N. Define
the generating functions
-k

z

B*hl, 2) = exp( 3 Z— b ) and
k k

(2.10)

K

E(hi, 2) z
k

n

expl - % hi-k) ) fori = 1,2,

Then one has directly the auxiliary operator
@11 E"hl+hd, o) x2h!, o) Y0142, 2 = - § xl2, 2

which obviously commutes with ¢ on V ® V. To find out what

relations hold among the components xaa_u - rmv. of x?u - :N. z) we
need the following.

Lemma 2. For izi > Iwl,

X! - b2, 2 X! - b2, w) = 22 xw! - b2 ) X! - B2 )

z+w

Proof. Following the proof of Lemma 1, the only difference is that
(w/z)k z-w
[BCl=-273 = log( ).
k k z+w

The crucial difference between these operators and those
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before which formed a Lie algebra, is that the normal ordering factor
here is antisymmetric in z and w, whereas before it was symmetric.
It means that in order to obtain the inner contour integral over
CRN\C, we must anticommute components of the auxiliary vertex

operator. One easily obtains the following Clifford algebra.
Corollary. For all m, n € 2,

1 2 1 2)y = o(_1)m
(2.12) nxa? - h“), x::. - h%)3 = 2(-1) 5

-’

To find the relations between components of x?u - rm. z) and
ﬁwrm. w), i = 1,2, we need the following.

Lemma 3. For !zl > Iw! we have

xh! - h2, 2 X@zhl, w) = 2% xm?! - h2, 2 X@hl, w,

z+w

X! - b2, 2 X@h2, w) = ZX¥ x! - b2, 2 X(2h?, w)

z-w

and for Iwl > 1zl we have

xzhl, w) X! - 12, 20 = ¥=% x@h!, w) X! - b2, 2,

w+z

X(2h2, w) X! - h2 2 = ¥*Z x@h?, w) X! - 12, 2

-z
Corollary. For all m, n € Z,

(2.13) ex ! - b2, X @hl) =2 ()P X, 0]+ bd),
(2.14) X! - b, X 2?3 = 2 X_, (! + b

so that for m € 22+1,

(2.15) x (! - b3, X (@) + X (2h%)3 = 0.

One may also see easily that
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2.16) X_h!-h?i181) = [ xol-b? 21612m &z = 0, for m > 0.
Now consider the collection of vectors in V @ V,
(2.17) Q-NJL%-,N,x-u.,u-mi-%v. X _gn, -1 -62)101)1
k20 ny>ny> s > 2 02,

From (2.12), (2.15), (2.16) one finds these vectors are linearly
independent and are killed by X Amruv + X Awrmv for 0 < n € 2, and
by ::E + rw:c for 0 < k € 2Z+1 (which represent positive root
vectors of g which kill 1 @ 1). The principally specialized character
of the space of highest weight vectors having basis (2.17) is

(2.18) L. SR )
nzl

where X is the weight of 1 @ 1. But the decomposition of V @ V

into two "strings” of level 2 irreducible g-modules is known C13J
to be

mem+58m 2wyHm+1 r..u v

(2.19) VeVvs=s 3% EB<

+b V
m20 m

where the outer multiplicities ag, vB are defined by

(2-20) T (@ax®™ + b x¥™) = (14 2,
m20 izt

The fundamental weights of g are wy and Wy, dual to the simple

roots Q.H and a,, V = <£N. and wg = - @y-d,. This implies that
the principally speclalized character of the space O of highest weight
vectors in V @ V is exactly (2.18), so that (2.17) is a basis of 0.
Since X (h! - h%) = ()™ X_(h2 - hl) it is clear that the
typical vector in (2.17) is symmetric if k is even and antisymmetric if
k is odd. To determine which string that vector falls into, note that

1 @ 1 has weight A = NEN. NEH = NEN + ay and wg has even
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principal degree. So when k is even we get a vector of weight NEN
+ mw; and when k is odd we get a vector of weight 2wy % (m+l)uwg

for some m 2 0. This gives the following. .

Theorem 1 [2]. We have

2wytmw

"
™M
]

S(v)

2w4+m+1)w
AV) 1 3,

]

b_V
EWOB

This result has a remarkable application to the determination of

certain root wmultiplicities in the hyperbolic algebra F with Dynkin

diagram @==——=39 @ . This algebra has a 2Z-graded

construction [2]
2.21) F= X F
such that Fy = g + Cd is the usual extension of g by the derivation

- - +. .
m. wu n <€N “3 a<m=m wtu u <€N 3 x <u is the dual

(contragredient) g-module. The higher "levels” of F are much more
complicated, being the graded pieces of free Lie algebras generated by
Fyfforn>0)or F_y (forn<0 ) modulo a graded ideal

(2.22) 1= 3 I
It turns out that
(2.23) Fap ¥ oy ~Fyoq) / Ly

E 3
can be precisely determined using Theorem 1 and its analog for V @
V' = S(V) ® A(V'). One finds that

- ~1)w.
I N p yRurtim-tles
@24) FyaFp=AVE )= 3 oby
and
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: 2Wq =W
(2.25) L=v 178

This gives a precise formula for the hyperbolic root multiplicitics on
the second level of F which shows them to be closely related to the

values of the classical partition function. Further details may be
found in [2].

3. ANOTHER TENSOR PRODUCT DECOMPOSITION
Joint work is in progress with J. Lepowsky on the analogue of
the results from section 2 in the case when g is of type >m~v.

The decomposition V. € V = S(V) & A(V) for the basic >m~vtaca=_o
- v2 . _ . (2) . ;
V=YV may be applied to the hyperbolic algebra A, with Dynkin

diagram ﬁl‘l‘ , simple roots gy, Gy dg

and fundamental weights ...J. Wy, Wy

Theorem 2. We have the decomposition

NSN+N3€w euiwaﬁvc..w
(3.1) vVevs= I ?S \' +b V )
mz0 m

into irreducible level 2 g-modules, where the outer Sc_a.u:oamm are
given by

AQ.NV M QENB = n A.._. - xm:.cuvlu. AH - xmblﬁvlu
n20 n21

(3.3) > 73%5 = 0 (1- NW:INVIH a- N@:lwvlu.
m20 n>l

These are the product sides of the famous Rogers-Ramanujan
identities C10, 14-161, which provide two combinatorial descriptions of
the coefficients. We have that ap mmcmﬂm the number of partitions of
m into parts £ 1,4 mod 5 which equals the number of partitions of m
into parts with difference at least 2. Also, b, equals the number of
partitions of m into parts = 2, 3 mod 5 which equals the number of

partitions of m into parts with difference at least 2 and no part less

194

than 2. .
The principally specialized character. of the space 0Q of highesi
weight vectors in V @ V is

NSN
(3.4) ch(Q) = e 2 la

3m 3m+1
o mU ¥ bpu ).

Using some auxiliary vertex operator one expects to find a basis for O
which explains the combinatorial descriptions of ay and vs. In fact,
numerical data on the root muliplicities of the hyperbolic algebra
wmnv provided by V.G. Kac F&omnm that the second level of that
algebra consists of those irreducible components of V @ V having
highest weight vector of odd principal degree greater than 1 relative
to 1 ® 1. This indicates that A(V) consists of all components having
highest weight vector of odd principal degree and that I, =
v

antisymmetric, here we have the following.

Instead of two strings, one symmetric and one

Theorem 3. If V is the basic >MNV|=SQ=_@ and V @ V = S(V) &
A(V) then

N8+~_58 €+E.B+wvs
2 3 1 3

(a, .V +b \Y )
aWo 2m 2m+1 )

NEN+$B+Nv€w

{3.5) 8(V}

H

,.J+§5+:cdv

(36) AV) = T (agn.q V

+b, V
>0 2m

The basic module for >m~v is constructed as follows [81].
Let & be the Heisenberg algebra with generators hin), n = =1 mod 6
such that

(3.7) Chm), htn)] = m 3 .
V is the symmetric algebra of polynomials in Ch(-n) | 0 < n €
Z, n = *1 mod 6 3. Then V is an irreducible s-module. Let € be

a primitive mnr root of unity. Define the vertex operator
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. k k ~k ~k
(3.8) X(2h,7) = exp(T = E L op(kiexpl-s Z_.. £ *1
z = NVE exp( m - NVE 2h{k))

where the summations are over 0 < k € Z, k = +1 mod 6 (as they
are throughout this section unless otherwise indicated). Then s and

the components N%ANE. n € 2, of X(2h,2) provide the basic

. 2 . o .
representation of A, ) on V in the principal realization. To find the

bracket of two vertex components, for example,
following.

one uses the

Lemma 4. For Izl > Iwl

X(2hz) X(2hw) = ( 22¥ )2 ( ZZ€v ) ( ztelu

Z+w zZ+eEw 2
z-€"w

): X(2h,z) X(2h,w):.

The representation of g on V @ V is given by :r:; + rm?:. m

= =1 mod 6 and x:ﬁ:uv + stmrmv. n € Z. Defining generating
functions

. -k -~k .
(3.9) E*hlz) = exp( T 2 niié

—

k k ,1/2

o k .k .
(3.10) E™h', 2) = expl - T 2= £ *1 iy

k k NH\M

for i=1,2 one finds the auxiliary operator
(3.11) B! + k%, 2 X(2h), 2) E*h? + 82, 5 = X! - 2, ).

1 .
The components x;? - rmv obviously commute with & on V ® V.
We need the following.

Lemma 5. For Izl > lwi,

Xth! - b2, 2 xth! - b2, w) =
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2

Eowyzmenyl/2zre W \1/2 w1 b2 x(hl-n?, wh.
zZ4+wWw zZ+EW 2

Z=-€ W

At this point the occurence of the fractional exponents makes

the use of the contour integral techniqgue much more difficult.

However, the alternative technique of formal variables and "correction
factors” [10, 12, 15-16] easily shows that the components of this
auxiliary vertex operator satisfy so-called "generalized anticommutation
relations” which give them the structure of a "Z-algebra”. While much
more complicated than (2.12), this structure does allow one to

determine a set of monomials

w! -1 8 1)

@120 X_o ! - b3 X (bl - b?) eee X
n

-my 2 ~m
which are a basis for the "vacuum space” of s (vectors killed by
rrsv + _..N:E for 0 <m = 21 mod 6 ). It then remains to find the
subspace of highest weight vectors also killed by xsﬁruv + xaAmrmv
for all 0 < n € Z. That also requires the techniques of Z-algebras.

Details will appear elsewhere.

4 THE VERTEX REPRESENTATION OF gI‘%)2¢)

In 3] constructions were given of all the "classical” affine

algebras; the orthogonal series UM:. wM: UMMW. the symplectic

series OMP ). BY0,0), c!)(g+1), and the general linear series >MWW.
>mww~. >mwv. >S:c.mha:. >§6.m‘8‘ The representations of the

orthogonal and symplectic series are quite analogous to the well-known

spinor and  oscillator representations, respectively, in the
finite~dimensional theory. The representations are given by certain
"normally ordered” quadratic expressions whose linear factors come
from an msminml&am:mmo:m_ Clifford or Weyl algebra. As was
explained in the introduction, these are calied fermonic or bosonic
constructions, respectively. The fermionic constructions of the
orthogonal series were previously known (4,591, as was the
existence of a bosonic construction of OM: CGarland and,

independently, Primec, unpublished]. Essentially new was the
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possibility of having both fermionic and bosonic constructions of the

general linear series. The homogeneous vertex representation [5,7]

2 .
of type >m.~w_ {or more precisely, of mlwzwﬁ ) was essential to

the discovery of these constructions. I will describe how this was
done.

Consider the Lie algebra involution o of al(22) given by

{4.1) o =

Then gI(22) = g © g where gy = sp(22) is the fixed point
set of o and on g1, o acts as -1, Then we have

@2 a1®2e) = o o cre?, 23 + g, @ tere? 127 + o
where ¢ is central and
(4.3) tx@thy @tV =[xyl @t +s

with invariant bilinear form <x,y> = Tr(xy) on gl(22). This is a
subaigebra of

(4.4) a1 V2e) = gr20) & crt, 717 + e,

One usually extends these algebras by adjoining the derivation

(4.5) arh2e) = qrfilzg) + ¢d, =12

Let B, 1 i, § € 22 be the standard basis of al(22), then rm

TR
m:.Hmmm

22, is an orthonormal basis for the Cartan subalgebra b

of gl{22). Let hg be the Cartan subalgebra of gy with basis h, =

i
F—.lTa.T.&.HMnMN.msm_ﬂnT"TOQTHiﬁ—u TH”QH.
Using the form Af. E.v = mf. to identify the dual space rq with b

we find the root system of gr(2¢) is
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(4.6} ¢ =¢Ch -h; | 1€i=2j<22,

For x € gl{24) let X0 = W? + ox) and x} = .w.? - ox) denote the

projections of x onto =0 and gy respectively.  Then 0 C hy is
the root system for: mo. of type C,. With respect to by the root
system of gy consists of the short roots of 0c.
For x € gI{(24), n € 2, let us denote
o .n wp
x- ® t it n € 22
4.7 ) x(n/2) = .
“n A x! @ t"  if n € 22+1
in miw:wﬁ. "To get the homogeneous vertex representation of

aiwzwﬁ we begin with the Heisenberg algebra b, generated by

(4.8) Chym), ¢ | 1<i<)2, m€ 329
14 [4
where . Vh D.TssmN
m Qﬂ.\\s A_):»\ : ‘
. ! S~ L
(4.9) A [fmnezts

Let m:amv denote the symmetric algebra of polynomials in nfTSv |

22
1<i€% 0<m€ 323 LetP= I Zh; denote the weight
. P2

lattice of gTI(2#2) which projects to _uo. the weight lattice of g

We have the root lattice Q = Mmﬂﬁ Zq, of gI(24) (where qQ
= vm - rTH. 1 €1 € 22-1, are the simple roots) which projects onto
the root lattice Oc of g There are two cosets of oo in vc. Pl =
Oc Vv ou. Let ﬁhvcu denote the group algebra generated by formal

exponentials e, u € vc. Then one has the two representation spaces

(4.10) vZ = s(h;) & €], k=0,1
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where the action of h(m), m # 0 is as usual on m:;.uwv. but

(4.11) KONV 8 e) = < >(v @ ),

The rest of &lmzmﬁ is represented by the action of the homogeneous

components of the vertex operators

(4.12) X%z =
n
exp(2 T Z-  pu(-n/2))exp(2 logiz)u(0)+ul)
nzl n
27" 0
« exp(-2 X u({n/2))e 0
nzl n u

for 4 € &. Here no" 1c x po — (=13 is a bilinear function

which must satisfy certain properties discussed below, and Y

0
acts by i

(4.13) e v e et =l A g M)
¢

The components of X?€(u,z) for u € P are defined by
(4.14) X7z = F XT€(u) M
mEZ

where Z = 2 or Z + W depending on whether :o is in oc or ou.

This is determined by the action of the middle exponential of (4.12) in
k

CrQty,

0,0 0,0 0
(4.15)  exp(2 logladu(Opruled = L2 AT +<ut 0> A+
Since ® C Q the components representing arl AN:N.S are all
integral. In fact, <W is the basic module.
To compute brackets of vertex operator components one uses

the following.

Lemma 6. For izl > Iwl
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X%\ ,z) XO€(uw) =

€200, 1% (zow) Mot gy Hoom?

0
AsthV

XTE0L2X 7 € (W)
In order to find commutation relations one must have

(4.16) @Ay = 000 0

0 it suffices to have

for A\, u € &  Using the bilinearity of ¢
condition (4.16) for the simple roots in ¢. This is easily obtained by
setting mo?m. nwv = 1 for i € j, so the other values are determined
by (4.16).

We wish to understand how to write
(4.17) X€hy - by 2) = XO€(hy, 2 XT€(-hy, 2
so that the o.oBuozmsnm of xnnau:m. z) form a Clifford &ma?.m. It is
necessary to extend the definition of 0 to € P X wc - (=12
so as to obtain

(4.18) etnu®) = - ()M g 0\0),

Define for 1 € i, j € &,

o +1 if i € 3j
. hi) =
(4.19) UL BN
m:a.
0o ,0
2<h;, h3>
0 i 3T _ 0
(4.20) €ie g by)H-1) = efh;, hy)
so that
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e(h ,
(4.21) e(hy, bg) = ive

|n:J+.s. uv if 1 = j,

Using the bilinear function € determined by these conditions in place
of nc in (4.12) we get anticommutation relations among the components
xnn?nfv. for which m € 2 + w. and we get the same commutation
relations as before among the components an:: - r_.r n € 2. We

find that for m, n € Z + W

(4.22) CXZ€Mh), XT(-h)3 = ethy, -hG) 5,55,

for 1 €14, j € 2¢, and

1
o€ oe - 0 m-3
(4.23)  CXT€M), X2y, 03 = elhy, - bG) 1) 2 s s
for 1 <14,j¢ &
Let us introduce the notation
*
(4.24) Cagm) = XZ€hy),  agim) = XI€(-hy)
for 1 € i< 22, m € Z+3. Then we have
N :
(4.25) Cagfm), a M) = 8,58, | 1€4J<22
1
m-3 .
(4.26)  Caym) a2 = (1) %58 1€, i<e
1
* * ~ m-3 N
@27 Ca;(m) ay, ,m)d = (-1) 8;j B 1€i, Js2.

As in the spinor construction of the orthogonal series, one would like
to consider the normally ordered quadratic expressions
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(4.28) S aymka)(k:
KEZ+3

*
for m € 2, as components of generating functions: mmEm .._Anr in

fermonic normal order. However, there are relations among the
generators

x
(4.29) az) = XO€(hy, 2,  a;(2) = X7€(-hy, 2)

which can only be seen from the definitions of these vertex operators.

Lemma 7. For 1 €1i € ¢,

1

(4.30) X%€(hy, p0 2 = 1) 2 X9€(-h;, -2)
and

_1
(4.31) . XO€(-hy, p 2 = (1) 2 X €(h;, -2).

Proof. Writing out the definitions of xQn?Tn. z) and meTf‘

-7) using (4.1) and (4.7) one sees that the first and third exponentials

are equal. Consider the difference between ﬂwm actions of their
middle exponentials and their cocycles € on my . From (4.15) the

first gives

] 0 0 0 0,0

2<<h;, A >+<hy, h;> A ~h

z : it elby, ;. 20) ¢ i

4] _ 3] .
because _J+§ = L.M. and the second gives

0 0 0.0 0,0

2<=h;, A >+<h; ,h;> A =h
(-2) } T n®, A0 e i

i’

But then from (4.20)
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0,0
2<-h}, A™>
-1) e-hd, A0 = ey, .. A0,

and Asw. rwv = m. so we get (4.30). The case of (4.31) is similar.
This shows that for 1 €1 € 2,

-3 =
a4 002) = (-1} © a;(-2) and
{4.32)
1
* -3
NH.T.QANV = AIHV ﬁmAlnv.

so that mim:mﬁ can be generated by the components of
* * * .
(4.33) : mmmvmuﬁr. : munvmuunr. a2 m.._ANr for 1 € i,j € 2.

Note how (4.32) gives (4.26) and (4.27) from (4.25).

This was the method by which the "twisted” constructions of
the general linear series were found. It is remarkable that when the
fermionic generators (4.25) are replaced by bosonic ones, or when the
index set Z is changed from N+w to 2, the functions {4.33) still

provide a representation of the same algebra. For further details see

£33.
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