Sections 2.1-2.3.
We can use the computer to generate random observations
MTB > random 50 c1
generates 50 numbers according to the bell curve
MTB > dotplot c1
.
. . : . :
. . ..: . ::..:: :. .::. .::... :. . .. . .
---+---------+---------+---------+---------+---------+---C1
-1.60 -0.80 0.00 0.80 1.60 2.40
MTB > gstd
MTB > histo c1
Histogram of C1 N = 50
Midpoint Count
-2.0 1 *
-1.5 3 ***
-1.0 6 ******
-0.5 10 **********
0.0 11 ***********
0.5 10 **********
1.0 4 ****
1.5 3 ***
2.0 1 *
2.5 1 *
*****************************************************************
MTB > random 60 c2;
SUBC> bernoulli .5.
generates a sequence of 50 numbers from {0,1}
It is like to throw a coin 60 times
MTB > print c2
C2
0 1 0 1 1 1 1 1 0 0 1 0 1 0 1
0 1 0 1 1 1 0 1 1 1 1 0 1 0 0
0 1 1 0 0 1 0 0 1 1 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
*****************************************************************
MTB > random 80 c3;
SUBC> integer 1 6.
generates a sequence of 80 numbers from {1,2,3,4,5,6}
It is like to throw a die 80 times
MTB > print c3
C3
4 3 4 1 5 2 5 1 6 6 1 2 2 5 5
1 3 1 4 2 5 5 6 6 4 6 6 4 6 6
6 4 5 4 6 4 3 5 1 1 1 3 3 5 6
2 1 1 3 6 2 3 3 4 4 3 6 1 5 6
1 5 4 3 6 1 3 4 5 2 1 2 5 1 3
6 3 6 4 4
*****************************************************************
Next, we generate a random sequence consisting of values
which have two components: a fixed component and a random component
MTB > set c4
DATA > 1:50
DATA > end
MTB > let c5=8+(c4/2)
MTB > random 50 c6;
SUBC> uniform -2 2.
MTB > let c7=c5+c6
MTB >plot c7*c4
*******************************************************************
First, we enter some data in c8
MTB > set c8
DATA > 2(9) 3(8) 3(7) 4(6) 2(5) 2(4) 3(3) 2(2) 4(1) 5(0)
DATA > end
MTB > sample 10 c8 c9;
SUBC> replace.
generates 10 values with replacement from c8
MTB > print c9
C9
8 0 9 6 1 2 6 6 0 9
MTB >sample 20 c8 c10
generates 20 values with replacement from c8
MTB > print c10
C10
8 6 6 1 7 7 3 7 9 0 1 4 1 9 3 0 0 2 0 0
*********************************************
Next, we choose two random columns. Assuming that the two sequences
should have mean zero, c12 is more accurate, but c11 is more precise.
Note that the mean the c12 is -0.023 and the mean of c11 is 0.860.
Looking to the graphs we also see that c12 is varying around 0,
but c11 is varying around something else.
The standard deviation of the c12 is 1.710 and that of c11 is 1.167.
Looking to the graphs also notice that c12 is varying more.
MTB > random 60 c11;
SUBC> unif -1 3.
MTB > random 60 c12;
SUBC> unif -3 3.
MTB > gstd
MTB > desc c11 c12
N MEAN MEDIAN TRMEAN STDEV SEMEAN
C11 60 0.860 0.884 0.853 1.167 0.151
C12 60 -0.023 -0.022 -0.035 1.710 0.221
MIN MAX Q1 Q3
C11 -0.931 2.746 -0.315 1.772
C12 -2.751 2.931 -1.431 1.494
MTB > histo c11 c12;
SUBC> same.
Histogram of C11 N = 60
Midpoint Count
-3.0 0
-2.5 0
-2.0 0
-1.5 0
-1.0 6 ******
-0.5 10 **********
0.0 5 *****
0.5 8 ********
1.0 6 ******
1.5 9 *********
2.0 4 ****
2.5 12 ************
3.0 0
Histogram of C12 N = 60
Midpoint Count
-3.0 1 *
-2.5 7 *******
-2.0 3 ***
-1.5 7 *******
-1.0 5 *****
-0.5 5 *****
0.0 5 *****
0.5 5 *****
1.0 6 ******
1.5 4 ****
2.0 6 ******
2.5 2 **
3.0 4 ****
MTB > dotplot c11 c12;
SUBC> same.
:
..... . :. :
.::::: :..:.::... :::::: .:::.:
-------+---------+---------+---------+---------+---------C11
. . .
:: .:.. .:.:.:... :....:..:..::: . .: ::.. :::
-------+---------+---------+---------+---------+---------C12
-2.4 -1.2 0.0 1.2 2.4 3.6
*******************************************************************
The following program assigns randomly grades to the class:
******
read c1;
tab.
Students
CATALIOTTI, JOSEPH
CHA, YE-JIN
DIPIETRO, LAURA
DUVALL, LEE
EDWARDS, HUGH
GREENHUT, MICHAEL
HSIEH, MON-RU
KARAMITSOS, IVANA
KARAS, CHRISTOPHER
KLARFELD, GUY
KLEIN, AARON
LEHMANN, CHRISTOPHER
LING, TIFFANY
LUI, GALE
MACLENNAN, ERIC
PARDES, DANIEL
POLAK, GEORGE
ROSENBERG, BRAD
ROYT, SERGEY
SCHECTER, HOWARD
SHIN, DONG
SIEFFERT, MICHAEL
SINOVCIC, ROKO
SNITKIN, EVAN
SOLOMON, JOSH
VAIS, PERRY
VALITES, MATTHEW C
WALDRON, JEFFREY J
WONG, JEFFREY
WU, RONGBO
end
name c2 'grades'
set c11
2(9) 3(8) 3(7) 4(6) 2(5) 2(4) 3(3) 2(2) 4(1) 5(0)
end
NOTE In total
NOTE 2 A, 3 A-, 3 B+, 4 B, 2 B-, 2 C+, 3 C, 2 C-, 4 D, 5 F
NOTE are assigned randomly to the 30 students in the class.
NOTE
sample 30 c11 c12
set c81
9 8 7 6 5 4 3 2 1 0
end
read c82;
tab.
X
A
A-
B+
B
B-
C+
C
C-
D
F
end
CONVERT table in C81 C82, convert c12 to c2
print c1-c2
end
*******************************************************************
You should create a file with the previous commands, then run this file
MTB > run 'file'