The first manipulations, we refer to the data in the Example 2.6. page 23. First we enter the data in the column C1. We can get the different frequency distributions doing: MTB > tally c1; SUBC> all. C1 COUNT CUMCNT PERCENT CUMPCT 0 15 15 50.00 50.00 1 8 23 26.67 76.67 2 3 26 10.00 86.67 3 3 29 10.00 96.67 5 1 30 3.33 100.00 N= 30 the columns are counts, cumulative counts, percent, cumulative percents. Alternatively, we can do MTB > tally c1; SUBC> counts; SUBC> percen; SUBC> cumcounts; SUBC> cumpercents. To graph the percents we do, MTB > Histogram C1; SUBC> Percent; SUBC> MidPoint; SUBC> Project.
To graph the cumulative percentages, we do: MTB > Histogram C1; SUBC> Cumulative; SUBC> Percent; SUBC> MidPoint; SUBC> Bar.
Next, we work with the yarn strength data: YARNSTRG.DAT, which is Example 2.7. So, either we open the worksheet with this data or we enter this data. We can get the Table 2.4 on frequencies in different interval by coding the data: MTB > code (.95:1.45)1 (1.45:1.95)2 (1.95:2.45)3 (2.45:2.95)4 (2.95:3.45)5 & CONT> (3.45:3.95)6 (3.95:4.45)7 (4.45:4.95)8 (4.95:5.45)9 (5.45:5.95)10 c1 c2 MTB > tally c2; SUBC> all. C2 COUNT CUMCNT PERCENT CUMPCT 1 4 4 4.00 4.00 2 11 15 11.00 15.00 3 18 33 18.00 33.00 4 21 54 21.00 54.00 5 16 70 16.00 70.00 6 15 85 15.00 85.00 7 8 93 8.00 93.00 8 5 98 5.00 98.00 9 1 99 1.00 99.00 10 1 100 1.00 100.00 N= 100 We can the histograms as follows MTB > Set c3 DATA> 1.2 : 5.7 / .5 DATA> end MTB > hist c1; SUBC> midp c3; SUBC> bar.
MTB > hist c1; SUBC> midp c3; SUBC> cumu; SUBC> freq; SUBC> conn.
****************** We can find the quartiles of the yarn strength data doing MTB > descr c1 N MEAN MEDIAN TRMEAN STDEV SEMEAN Ln_YarnS 100 2.9238 2.8331 2.8982 0.9378 0.0938 MIN MAX Q1 Q3 Ln_YarnS 1.1514 5.7978 2.2789 3.5732 We get: MINIMUM Q1 MEDIAN Q3 MAX 1.1514 2.2789 2.8331 3.5732 5.7978 ****************** To find the skewness and kurtosis of the yarn strength data we do: MTB > let k1=std(c1) MTB > let k2=mean((c1-mean(c1))**3) MTB > let k3=k2/(k1**3) MTB > print k3 K3 0.404016 MTB > let k4=mean((c1-mean(c1))**4) MTB > let k5=k4/(k1**4) MTB > print k5 K5 2.87466 We get that the skewness is 0.404016 and the kurtosis is 2.87466.