
1 Review of exponential, gamma, chi-square distribu-

tion

The gamma function is defined by

Γ(α) =

∫ ∞

0

tα−1e−t dt, α > 0.

Theorem 1.1. The gamma function satisfies the following properties:

(a) For each α > 1, Γ(α) = (α− 1)Γ(α− 1).

(b) For each integer n ≥ 1, Γ(n) = (n− 1)!.

(c) Γ(1/2) =
√

π.

Proof. For each α > 1, by an integration by parts

Γ(α) =
∫∞

0
tα−1e−t dt =

∫∞
0

tα−1d(−e−t) dt = tα−1(−e−t)
∣∣∣∞
0
−

∫∞
0

(−e−t)d(tα−1)

= tα−1(−e−t)
∣∣∣∞
0

+
∫∞

0
(α− 1)tα−2e−t dt = (α− 1)Γ(α− 1).

Next, we prove by induction that for each integer n ≥ 1, Γ(n) = (n− 1). The case n = 1

holds because

Γ(1) =

∫ ∞

0

e−t dt = 1.

The case n implies the case n + 1, because if Γ(n) = (n − 1)!, then Γ(n + 1) = nΓ(n) =

n(n− 1)! = n!.

Finally, by the change of variables t = x2/2, (dt = x dx),

Γ(1/2) =
∫∞

0
t−1/2e−t dt =

∫∞
0

√
2
x2 e

−x2

2 x dx =
√

2
∫∞

0
e−

x2

2 dx

=
√

2
2

∫∞
−∞ e−

x2

2 dx =
√

2
2

√
2π =

√
π

In particular, we have that ∫ ∞

0

xne−x dx = Γ(n + 1) = n! (1)

By the change of variables y = x
θ
,∫ ∞

0

xα−1e−x/θ dx =

∫ ∞

0

xα−1θαe−y dy = θαΓ(α) (2)

Exercise 1.1. Find:

(i)
∫∞

0
x3e−x dx.

(ii)
∫∞

0
x12e−x dx.

(iii)
∫∞

0
x23e−2x dx.

(iv)
∫∞

0
x24e−x/3 dx.



Exercise 1.2. Use integration by parts to show that∫
xe−x dx = −e−x(1 + x) + c.

Exercise 1.3. Use integration by parts to show that∫
x2

2
e−x dx = −e−x(1 + x +

x2

2
) + c.

Exercise 1.4. Prove that for each integer n ≥ 1,∫
xn

n!
e−x dx = −

n∑
j=0

e−x xj

j!
+ c.

Hint: use integration by parts and induction.

Definition 1.1. A r.v. X is said to have an exponential distribution with parameter λ > 0,

if the density of X is given by

f(x) =

{
e−

x
λ

λ
if x ≥ 0

0 if x < 0

We denote this by X ∼ Exponential(λ).

The above function f defines a bona fide density because it is nonnegative and∫ ∞

−∞
f(t) dt =

∫ ∞

0

e−
t
λ

λ
dt = −e−

t
λ

∣∣∣∞
0

= 1.

Theorem 1.2. Let X be a r.v. with an exponential distribution and parameter λ > 0, then

E[X] = λ, Var(X) = λ2, E[Xk] = λkk!, M(t) =
1

1− λt
, if t < λ−1.

Proof. Using (1.2),

E[Xk] =
∫∞

0
xk e−

x
λ

λ
dx = 1

λ
Γ(k + 1)λk+1 = k!λk

In particular,
E[X] = λ, E[X2] = 2λ2

Var(X) = E[X2]− (E[X])2 = λ2.

We have that for t < λ−1,

M(t) = E[etX ] =

∫ ∞

0

etx e−
x
λ

λ
dx =

1

λ

∫ ∞

0

e−x( 1−λt
λ

) dx =
1

λ

λ

1− λt
=

1

1− λt
.



The cumulative distribution function of an exponential distribution with mean λ > 0 is

F (x) = P (X ≤ x) =

∫ x

−∞
f(t) dt = 1− e−

x
λ , x ≥ 0.

The exponential distribution satisfies that for each s, t ≥ 0,

P(X > s + t|X > t) = P (X > s).

This is property is called the memoryless property of the exponential distribution.

Definition 1.2. X has a gamma distribution with parameters α > 0 and θ > 0, if the density

of X is

f(x) =

{
xα−1e−

x
θ

θαΓ(α)
if x ≥ 0

0 if x < 0

We denote this by X ∼ Gamma(α, θ).

The above function f defines a bona fide density because, by (1.2),∫ ∞

−∞
f(x) dx =

∫ ∞

0

xα−1e−
x
θ

Γ(α)θα
dx = 1.

A gamma distribution with parameter α = 1 is an exponential distribution.

Theorem 1.3. If X has a gamma distribution with parameters α and θ, then

E[X] = αθ, Var(X) = αθ2, E[Xk] =
Γ(α + k)θk

Γ(α)
, Var(X) = αθ2, M(t) =

1

(1− θt)α
, if t <

1

θ
.

Proof. Using (1.2),

E[Xk] =
∫∞

0
xk xα−1e−

x
θ

Γ(α)θα dx = 1
Γ(α)θα

∫∞
0

xk+α−1e−
x
θ dx = 1

Γ(α)θα Γ(k + α)θk+α = Γ(α+k)θα

Γ(α)
.

In particular,

E[X] = Γ(α+1)θ1

Γ(α)
= αθ,E[X2] = Γ(α+2)θ2

Γ(α)
= (α + 1)αθ2,

Var(X) = E[X2]− (E[X])2 = αθ2.

We have that for t < 1
θ
,

M(t) = E[etX ] =
∫∞

0
etx xα−1e−

x
θ

Γ(α)θα dx = 1
Γ(α)θα

∫∞
0

xα−1e−x( 1−θt
θ ) dx

= 1
Γ(α)θα

(
θ

1−θt

)α
Γ(α) = 1

(1−θt)α .



Definition 1.3. Given a positive integer ν, a random variable X is said to have a chi-

square distribution with degrees of freedom ν if and only if X has a gamma distribution with

parameters α = ν/2, and β = 2, i.e. X has a chi-square distribution with degrees of freedom

ν if its density is

f(x) =

{
x

ν
2−1e−

x
2

2
ν
2 Γ( ν

2
)

if x ≥ 0

0 if x < 0

We denote this by X ∼ χ(ν).

Theorem 1.4. If X has a chi-square distribution with degrees of freedom ν, then

E[X] = ν, Var(X) = 2ν, M(t) =
1

(1− 2t)ν/2
, if t <

1

2
.

Theorem 1.5. Suppose that X and Y are two independent r.v.’s with chi-square distributions

with respective degrees of freedom ν1 and ν2, then X + Y has a chi-square distribution with

ν1 + ν2 degrees of freedom.

Proof. Suppose that X and Y have respective mgf’s MX(t) = 1
(1−2t)ν1/2 and MY (t) = 1

(1−2t)ν2/2 .

Hence, that X + Y has mgf MX+Y (t) = 1
(1−2t)(ν1+µ2)/2 , which is the mgf of a chi-square distri-

bution with ν1 + ν2 degrees of freedom.

Theorem 1.6. Suppose that Z has a standard normal distribution, then Y = Z2 has a chi-

square distribution with one degree of freedom.

Proof. The cdf of Y = Z2 is

FY (y) = P[Z2 ≤ y] = P[−√y ≤ Z ≤ √
y] =

∫ √
y

−√y

e
−z2

2

√
2π

dz = 2

∫ √
y

0

e
−z2

2

√
2π

dz.

Hence, the pdf of Y is

fY (y) = 2
e
−y
2

√
2π

d

dy
(
√

y) = 2
e
−y
2

√
2π

1

2
√

y
=

y
1
2
−1e−

y
2

2
1
2 Γ(1

2
)

.

Corollary 1.1. Suppose that Z1, . . . , Zn are independent identically distributed r.v.’s with a

standard normal distribution, then Z2
1 + · · ·+ Z2

n has a chi-square distribution with n degrees

of freedom.


