Math-501. First Midterm. Wednesday, September 26, 2007.

- 1. Write the definition of a σ -field of a sample space Ω .
- 2. Write the definition of probability measure P defined on a measurable space (Ω, \mathcal{F}) .
- 3. Let (Ω, \mathcal{F}, P) be a probability space. Let $A_1, \ldots, A_n \in \mathcal{F}$, where $n \geq 2$. Write the definition of the independence of A_1, \ldots, A_n .
- 4. Suppose that A, B and C are independent events. Suppose that $P[A] = \frac{1}{2}$, $P[B] = \frac{1}{3}$, $P[C] = \frac{1}{4}$. Find $P[(A \cap B) \cup C]$.
- 5. Let X_1, \ldots, X_m be random variables. Let F_j be the cumulative distribution of X_j , for each $1 \leq j \leq m$. Let $\lambda_j \geq 0$, for each $1 \leq j \leq m$ such that $\sum_{j=1}^m \lambda_j = 1$. Show that there exists a r.v. X with cumulative distribution function $G(x) = \sum_{j=1}^m \lambda_j F_j(x)$, $x \in \mathbb{R}$.
- 6. Let X be a random variable. Suppose that for each $A \in \mathcal{B}(\mathbb{R})$, either P(A) = 1, or P(A) = 0. Show that there exists a constant c such that $\mathbb{P}(X = c) = 1$.
- 7. Let X be a random variable. Show that X and X + 1 do not have the same distribution.
- 8. Let X be a random variable. Suppose X and X + 1 are independent random variables. Show that there exists a constant c such that $\mathbb{P}(X = c) = 1$.