Math 501. 1st Homework. Due Monday, September 10, 2007
Homework on "Chapter 1"

1. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. Let $l \in \mathbb{R}$. Show that $\limsup _{n \rightarrow \infty} x_{n}=l$ if and only if:
(i) for each $\epsilon>0$, there exists a positive integer n_{0} such that for each $n \geq n_{0}$ $x_{n}<l+\epsilon$.
(ii) for each $\epsilon>0$ and each positive integer n_{0} there exists a positive integer $n \geq n_{0}$ such that $x_{n}>l+\epsilon$.
2. Prove that for a sequence of subsets $\left\{A_{n}\right\}_{n=1}^{\infty}$ of the universal set $\Omega, \lim _{n \rightarrow \infty} A_{n}$ exists if and only if for each $\omega \in \Omega, \lim _{n \rightarrow \infty} I\left(\omega \in A_{n}\right)$ exists.
Hint: Recall that $I\left(\omega \in A_{n}\right)$ is the indicator function of the set A_{n}.
3. Let $A:=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x<1,0 \leq y<1\right\}$. Show that A is neither an open set nor a closed set of \mathbb{R}^{2}, but $A \in \mathcal{B}\left(\mathbb{R}^{2}\right)$.
4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $A_{1}, \ldots, A_{n} \in \mathcal{F}$, where $n \geq 2$. Prove that

$$
\mathbb{P}\left[\cup_{i=1}^{n} A_{i}\right] \geq \sum_{i=1}^{n} \mathbb{P}\left[A_{i}\right]-\sum_{1 \leq i_{1}<i_{2} \leq n}^{n} \mathbb{P}\left[A_{i_{1}} \cap A_{i_{2}}\right]
$$

5. Let A_{1}, \ldots, A_{n} be n arbitrary events. Show that the probability that exactly one of these n events will occur is

$$
\begin{aligned}
& \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)-2 \sum_{1 \leq i_{1}<i_{2} \leq n} \mathbb{P}\left(A_{i_{1}} \cap A_{i_{2}}\right)+3 \sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n} \mathbb{P}\left(A_{i_{2}} \cap A_{i_{2}} \cap A_{i_{3}}\right) \\
& +\cdots+(-1)^{n+1} n \mathbb{P}\left(A_{1} \cap A_{2} \cdots \cap A_{n}\right)
\end{aligned}
$$

Hint: If $n=2$, the event consisting of the outcomes where exactly one of the events A_{1}, A_{2} happens is $\left(A_{1} \cup A_{2}\right)-\left(A_{1} \cap A_{2}\right)=\left(A_{1}-A_{2}\right) \cup\left(A_{2}-A_{1}\right)$. Its probability is

$$
\mathbb{P}\left(A_{1}-A_{2}\right)+\mathbb{P}\left[A_{2}-A_{1}\right]=\mathbb{P}\left[A_{1}\right]+\mathbb{P}\left[A_{2}\right]-2 \mathbb{P}\left[A_{1} \cap A_{2}\right]
$$

6. A survey indicates that 80% of college students from New York state owns a cell phone, 50% owns an Ipod and 40% owns both a cell phone and an Ipod. Calculate the probability that a college student from New York state chosen at random owns either a cell phone or an Ipod.
7. The National Institutes of Health has the following information on retired American persons:
(i) 34% have heart disease;
(ii) 23% have cancer;
(iii) 29% have diabetes;
(iv) 12% have heart disease and cancer;
(v) 4% have heart disease and diabetes;
(vi) 8% have cancer and diabetes;
(vii) 1% have heart disease, cancer and diabetes.

Calculate the percentage of retired American persons which do not have neither heart disease, nor cancer, nor diabetes.
8. Let X be a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}\sin (x) & \text { if } x \leq-1 \\ \frac{1}{x} & \text { if }-1<x<0 \\ \frac{x^{2}+4}{x+8} & \text { if } 0 \leq x \leq 2 \\ e^{x}+\log (x) & \text { if } 2<x\end{cases}
$$

Show that $f(X)$ is a random variable.
9. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $A_{1}, \ldots, A_{n} \in \mathcal{F}$ be independent events. Show that

$$
\mathbb{P}\left[\cup_{i=1}^{n} A_{i}\right]=1-\prod_{i=1}^{n}\left(1-\mathbb{P}\left[A_{i}\right]\right)
$$

10. Let A and B be two independent events with $\mathbb{P}[A]=2 \mathbb{P}[B]$ and $\mathbb{P}[A \cup B]=\frac{7}{25}$. Find $\mathbb{P}[A]$ and $\mathbb{P}[B]$.
