Math 501. 2-nd Homework. Due Wednesday, September 26, 2007.

Homework on "Chapter 3".

Definition 1.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let C_1, \ldots, C_m be collections of measurable subsets of Ω . We say that C_1, \ldots, C_m are independent, if for each $C_1 \in C_1, \ldots, C_m \in C_m, C_1, \ldots, C_m$ are independent events.

- 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\mathcal{C}_1, \ldots, \mathcal{C}_m$ be independent collections of measurable subsets of Ω . Suppose that \mathcal{C}_i is a π -class for each $1 \leq i \leq m$. Let $1 \leq k < m$. Show that $\sigma(\mathcal{C}_1 \cup \cdots \cup \mathcal{C}_k)$ and $\sigma(\mathcal{C}_{k+1} \cup \cdots \cup \mathcal{C}_m)$ are independent collections of events.
- 2. Let X, Y and Z be three independent r.v.'s. Let $h : \mathbb{R}^2 \to \mathbb{R}$ be a Borel function. Show that X and h(Y, Z) are independent r.v.'s.
- 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\mathcal{C}_1, \ldots, \mathcal{C}_m$ be independent collections of measurable subsets of Ω . Suppose that \mathcal{C}_i is a π -class for each $1 \leq i \leq m$. Let $1 \leq k < l < m$. Show that $\sigma(\mathcal{C}_1 \cup \cdots \cup \mathcal{C}_k), \sigma(\mathcal{C}_{k+1} \cup \cdots \cup \mathcal{C}_l)$ and $\sigma(\mathcal{C}_{l+1} \cup \cdots \cup \mathcal{C}_m)$ are independent collections of events.
- 4. Let C be a class of sets of a universal set Ω . Suppose that C is a π —class and a λ -class. Show that C is a σ -field.
- 5. Let μ_1 and μ_2 be two measures on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$. Suppose that for each bounded closed triangle T of \mathbb{R}^2 , $\mu_1(T) = \mu_2(T) < \infty$. Show that $\mu_1 = \mu_2$, i.e. $\mu_1(A) = \mu_2(A)$, for each $A \in \mathcal{B}(\mathbb{R}^2)$.
- 6. Let A be a Borel set of \mathbb{R}^d and let $a \in \mathbb{R}^d$. Let m be the Lebesgue measure in $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. We define

 $a + A = \{x \in \mathbb{R}^d : \text{there exists } b \in A, \text{such that } x = a + b\}.$

- (i) Prove that a + A is a Borel set of \mathbb{R}^d .
- (ii) Prove that m(A) = m(a + A).
- 7. Let A and B be two Borel sets of \mathbb{R}^d . We define

 $A + B = \{x \in \mathbb{R}^d : \text{there exists } y \in A, z \in B, \text{such that } x = y + z\}.$

Prove that A + B is a Borel set of \mathbb{R}^d .

8. Let X_1, \ldots, X_n be independent identically distributed r.v.'s. Show that for each set $A \in \mathcal{B}(\mathbb{R}^n)$ and each permutation σ of $\{1, \ldots, n\}$,

$$\mathbb{P}\{(X_1,\ldots,X_n)\in A\}=\mathbb{P}\{(X_{\sigma(1)},\ldots,X_{\sigma(n)})\in A\}.$$

9. Let X_1, \ldots, X_n be r.v.'s. Suppose that for each set $A \in \mathcal{B}(\mathbb{R}^n)$ and each permutation σ of $\{1, \ldots, n\}$,

$$\mathbb{P}\{(X_1,\ldots,X_n)\in A\}=\mathbb{P}\{(X_{\sigma(1)},\ldots,X_{\sigma(n)})\in A\}.$$

- (i) Show that X_1, \ldots, X_n are identically distributed r.v.'s.
- (ii) Find r.v.'s X_1, \ldots, X_n which are not independent and for each set $A \in \mathcal{B}(\mathbb{R}^n)$ and each permutation σ of $\{1, \ldots, n\}$,

$$\mathbb{P}\{(X_1,\ldots,X_n)\in A\}=\mathbb{P}\{(X_{\sigma(1)},\ldots,X_{\sigma(n)})\in A\}$$

10. Given a probability measure P on a measurable space (Ω, \mathcal{F}) , the outer measure P^* of P is defined as

$$P^*(E) = \inf\{P(A) : E \subset A, A \in \mathcal{F}\}, E \subset \Omega.$$

(i) Show that P^* is an outer measure, i.e. it satisfies the conditions in Definition 3.4.1.

(ii) Show that for each set $E \subset \Omega$, there exists a set $A \in \mathcal{F}$ such that $E \subset A$ and $P^*(E) = P(A)$.