Math 501. 2-nd Homework. Due Wednesday, September 26, 2007.

Homework on "Chapter 3".

Definition 1.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$ be collections of measurable subsets of Ω. We say that $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$ are independent, if for each $C_{1} \in$ $\mathcal{C}_{1}, \ldots, C_{m} \in \mathcal{C}_{m}, C_{1}, \ldots, C_{m}$ are independent events.

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$ be independent collections of measurable subsets of Ω. Suppose that \mathcal{C}_{i} is a π-class for each $1 \leq i \leq m$. Let $1 \leq k<m$. Show that $\sigma\left(\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{k}\right)$ and $\sigma\left(\mathcal{C}_{k+1} \cup \cdots \cup \mathcal{C}_{m}\right)$ are independent collections of events.
2. Let X, Y and Z be three independent r.v.'s. Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a Borel function. Show that X and $h(Y, Z)$ are independent r.v.'s.
3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$ be independent collections of measurable subsets of Ω. Suppose that \mathcal{C}_{i} is a π-class for each $1 \leq i \leq m$. Let $1 \leq k<l<m$. Show that $\sigma\left(\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{k}\right), \sigma\left(\mathcal{C}_{k+1} \cup \cdots \cup \mathcal{C}_{l}\right)$ and $\sigma\left(\mathcal{C}_{l+1} \cup \cdots \cup \mathcal{C}_{m}\right)$ are independent collections of events.
4. Let \mathcal{C} be a class of sets of a universal set Ω. Suppose that \mathcal{C} is a π-class and a λ-class. Show that \mathcal{C} is a σ-field.
5. Let μ_{1} and μ_{2} be two measures on $\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right)\right)$. Suppose that for each bounded closed triangle T of $\mathbb{R}^{2}, \mu_{1}(T)=\mu_{2}(T)<\infty$. Show that $\mu_{1}=\mu_{2}$, i.e. $\mu_{1}(A)=\mu_{2}(A)$, for each $A \in \mathcal{B}\left(\mathbb{R}^{2}\right)$.
6. Let A be a Borel set of \mathbb{R}^{d} and let $a \in \mathbb{R}^{d}$. Let m be the Lebesgue measure in $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$. We define

$$
a+A=\left\{x \in \mathbb{R}^{d}: \text { there exists } b \in A, \text { such that } x=a+b\right\} .
$$

(i) Prove that $a+A$ is a Borel set of \mathbb{R}^{d}.
(ii) Prove that $m(A)=m(a+A)$.
7. Let A and B be two Borel sets of \mathbb{R}^{d}. We define

$$
A+B=\left\{x \in \mathbb{R}^{d}: \text { there exists } y \in A, z \in B \text {, such that } x=y+z\right\}
$$

Prove that $A+B$ is a Borel set of \mathbb{R}^{d}.
8. Let X_{1}, \ldots, X_{n} be independent identically distributed r.v.'s. Show that for each set $A \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and each permutation σ of $\{1, \ldots, n\}$,

$$
\mathbb{P}\left\{\left(X_{1}, \ldots, X_{n}\right) \in A\right\}=\mathbb{P}\left\{\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right) \in A\right\}
$$

9. Let X_{1}, \ldots, X_{n} be r.v.'s. Suppose that for each set $A \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and each permutation σ of $\{1, \ldots, n\}$,

$$
\mathbb{P}\left\{\left(X_{1}, \ldots, X_{n}\right) \in A\right\}=\mathbb{P}\left\{\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right) \in A\right\}
$$

(i) Show that X_{1}, \ldots, X_{n} are identically distributed r.v.'s.
(ii) Find r.v.'s X_{1}, \ldots, X_{n} which are not independent and for each set $A \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and each permutation σ of $\{1, \ldots, n\}$,

$$
\mathbb{P}\left\{\left(X_{1}, \ldots, X_{n}\right) \in A\right\}=\mathbb{P}\left\{\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right) \in A\right\}
$$

10. Given a probability measure P on a measurable space (Ω, \mathcal{F}), the outer measure P^{*} of P is defined as

$$
P^{*}(E)=\inf \{P(A): E \subset A, A \in \mathcal{F}\}, E \subset \Omega
$$

(i) Show that P^{*} is an outer measure, i.e. it satisfies the conditions in Definition 3.4.1.
(ii) Show that for each set $E \subset \Omega$, there exists a set $A \in \mathcal{F}$ such that $E \subset A$ and $P^{*}(E)=P(A)$.

