Math 501. 3-rd Homework. Due Monday, October 15, 2007.

Homework on the "Lebesgue Measure".
Name: \qquad

1. (Extended dominated convergence theorem) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ and let $\left\{g_{n}\right\}_{n=1}^{\infty}$ be two sequence of measurable functions on the measure space $(\Omega, \mathcal{F}, \mu)$. Suppose that:
(i) For each $\omega \in \Omega,\left|f_{n}(\omega)\right| \leq g_{n}(\omega)$.
(ii) For each $\omega \in \Omega, \lim _{n \rightarrow \infty} f_{n}(\omega)=f(\omega)$.
(iii) For each $\omega \in \Omega, \lim _{n \rightarrow \infty} g_{n}(\omega)=g(\omega)$.
(iv) $\lim _{n \rightarrow \infty} \int_{\Omega} g_{n}(\omega) d \mu(\omega)=\int_{\Omega} g(\omega) d \mu(\omega)$.
(v) $\int_{\Omega} g(\omega) d \mu(\omega)<\infty$.

Show that $\lim _{n \rightarrow \infty} \int_{\Omega} f_{n}(\omega) d \mu(\omega)=\int_{\Omega} f(\omega) d \mu(\omega)$.
2. Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x^{2}} & \text { if } 0<x \leq 1 \\ 0 & \text { if } x=0\end{cases}
$$

Show that f is continuous in $[0,1]$ and differentiable in $(0,1)$. Show that $\int_{0}^{1} f^{\prime}(x) d x$ does not exists as a Lebesgue integral.
3. Let

$$
f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Prove that

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} f(x, y) d y d x=\frac{\pi}{4} \\
& \int_{0}^{1} \int_{0}^{1} f(x, y) d x d y=-\frac{\pi}{4}
\end{aligned}
$$

and

$$
\int_{0}^{1} \int_{0}^{1}|f(x, y)| d y d x=\infty
$$

4. Let X be a r.v. Show that the following conditions are equivalent:
(i) For each $a \in \mathbb{R}, \mathbb{P}\{X=a\}=0$.
(ii) For any r.v. Y independent of $X, \mathbb{P}\{X=Y\}=0$.
5. Let X and Y be two independent r.v.'s. Let $p \geq 1$. Suppose that $E\left[|X|^{p}\right]<\infty$ and $E\left[|Y|^{p}\right]<\infty$. Show that $E\left[|X+E[Y]|^{p}\right] \leq E\left[|X+Y|^{p}\right]$.
6. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ and $\left\{Y_{n}\right\}_{n=1}^{\infty}$ be independent sequences of r.v.'s. Let $0 \leq u<t$. Show that

$$
\mathbb{P}\left\{\sup _{n \geq 1}\left|X_{n}\right| \geq t\right\} \inf _{n \geq 1} \mathbb{P}\left\{\left|Y_{n}\right|<u\right\} \leq \mathbb{P}\left\{\sup _{n \geq 1}\left|X_{n}+Y_{n}\right| \geq t-u\right\}
$$

7. Suppose X and Y are independent continuous r.v.s with corresponding c.d.f.'s F_{X} and F_{Y}. Suppose that for each $a \in \mathbb{R}$, that $F_{X}(a) \leq F_{Y}(a)$. Show that $P(X \geq Y) \geq 1 / 2$.
8. Let $1<p, q<\infty$ such that $\frac{1}{p}+\frac{1}{q}=1$. Let f, g be two nonnegative measurable functions such that $f \in L_{p}, g \in L_{p}$. Prove that

$$
\int|f g| d \mu=\|f\|_{p}\|g\|_{q}
$$

if and only if

$$
\|g\|_{q}^{q}|f|^{p}=\|f\|_{p}^{p}|g|^{q} \quad \text { a.e. }
$$

9. Let $1<p<\infty$. Let f, g be two measurable functions such that $f, g \in L_{p}$. Prove that $\|f+g\|_{p}=\|f\|_{p}+\|g\|_{p}$ if and only if there are nonnegative constants s, t, not both zero, such that $s f=t g$ a.e.
10. Let X be a r.v. in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that for some $p_{0}>0$, $E\left[|X|^{p_{0}}\right]<\infty$ and $E\left[\frac{1}{|X|^{p_{0}}}\right]<\infty$. Show that $\lim _{p \rightarrow 0}\left(E\left[|X|^{p}\right]\right)^{1 / p}=e^{E[\log |X|]}$.
