Math 501. 4-th Homework. Due Wednesday, October 31, 2007.

Homework on "Basic properties of Random variables and Expectation".

1. A real estate agent is selling a house. If the house is sold within the first month after the home hits the market, the real estate agent makes $\$ 3000$. If the house is sold within the second month, the real estate agent makes $\$ 2000$. If the house is sold within the third month, the real estate agent breaks even. If the house is not sold by three months, the real estate agent losses $\$ 4000$. The probability that the house is sold within the $i-$ th month is $\frac{1}{2^{i}}$, for $i=1,2, \ldots$ What is the real estate agent expected profit?
2. Find two r.v.'s X_{1} and X_{2} such that:
(i) For each $a<b, \mathbb{P}\left[a<X_{1} \leq b, a<X_{2} \leq b\right]=\mathbb{P}\left[a<X_{1} \leq b\right] \mathbb{P}\left[a<X_{2} \leq b\right]$.
(ii) X_{1} and X_{2} are not independent r.v.'s.
3. Find two r.v.'s X_{1} and X_{2} such that:
(i) Both X_{1} and X_{2} have a continuous distribution.
(ii) $X_{1}+X_{2}$ does not have a continuous distribution.
4. The random variables X and Y have joint density function

$$
f(x, y)= \begin{cases}3 x & \text { if } 0 \leq x \leq y \leq 2 x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(i) Find $P[Y \geq 1]$.
(ii) Find $P[Y \geq 1 \geq 3 X]$.
5. A median m of a r.v. X is a value such that $\mathbb{P}[X<m] \leq \frac{1}{2} \leq \mathbb{P}[X \leq m]$. Let F be the cdf of a r.v. X. Let $m_{1}=\sup \left\{t \in \mathbb{R}: F(t)<\frac{1}{2}\right\}$ and let $m_{2}=\inf \left\{t \in \mathbb{R}: F(t)>\frac{1}{2}\right\}$. Show that:
(a) $-\infty<m_{1} \leq m_{2}<\infty$.
(b) m is a median of X if and only if $m_{1} \leq m \leq m_{2}$.
6. Consider a r.v. X with finite first moment. Let $\phi(a)=E[|X-a|], a \in \mathbb{R}$. Show that:
(i) For each $a \in \mathbb{R}, \phi(a)<\infty$.
(ii) ϕ is a continuous function.
(iii) $\lim _{|a| \rightarrow \infty} \phi(a)=\infty$ is a continuous function.
(iv) $\phi(a)=\inf _{x \in \mathbb{R}} \phi(x)$ if and only if a is a median of X.
7. Let X be a r.v. with cdf

$$
F(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{x+1}{8} & \text { if } 0 \leq x<2 \\ \frac{(x+1)^{2}+10}{40} & \text { if } 2 \leq x<4 \\ 1 & \text { if } 4 \leq x\end{cases}
$$

Find the mean, the median, and the variance of X.
8. Let Y_{1} and Y_{2} be two jointly continuous random variables with joint density function

$$
f\left(y_{1}, y_{2}\right)= \begin{cases}24 y_{1} y_{2} & \text { if } 0 \leq y_{1}, 0 \leq y_{2}, y_{1}+y_{2} \leq 1 \\ 0 & \text { else }\end{cases}
$$

(i) Find the mean and the variance of Y_{1} and Y_{2}.
(ii) Find the covariance and the correlation coefficient of Y_{1} and Y_{2}.
9. Let X and Y be two random variables satisfying that

$$
\operatorname{Var}(X)=2, \operatorname{Var}(Y)=5 \text { and } \operatorname{Var}(-3+2 X-3 Y)=17
$$

Find the covariance of X and Y.
10. Let X and Y be two independent random variables with moment generating functions given by

$$
M_{X}(t)=e^{t+t^{2}} \text { and } M_{Y}(t)=e^{2 t+2 t^{2}}
$$

Find the mean and the variance of the random variable $Z=2 X-Y$.
11. Suppose that X_{1} and X_{2} are two independent r.v.'s. Show that if X_{1} and $X_{1}+X_{2}$ have the same distribution, then $\mathbb{P}\left\{X_{1}=0\right\}=1$.
12. Suppose that X_{1}, X_{2} and X_{3} are three independent identically distributed r.v.'s. Show that if $X_{1}+X_{2}$ and $X_{1}+X_{3}$ are independent, then X_{1} has a degenerate distribution.

