Math 501. 6-th Homework. Due Friday, November 30, 2007.

Homework on "Common discrete and continuous distributions".

Name:

- 1. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Suppose that there exists R > 0 such that $\sum_{n=0}^{\infty} |a_n| R^n < \infty$. Then,
 - (i) For each $|x| \leq R$, $f(x) = \sum_{n=0}^{\infty} a_n x^n$ exist.
 - (ii) For each |x| < R, $g(x) = \sum_{n=1}^{\infty} a_n n x^{n-1}$ exist.
 - (iii) For each |x| < R, f'(x) = g(x).
 - (iv) For each $n \ge 0$, $a_n = \frac{f^{(n)}(0)}{n!}$
- 2. Let 0 . Let Y be a r.v. Suppose that:
 - (i) $\mathbb{P}[Y \in \mathbb{N}] = 1.$
 - (ii) For each $k, n \in \mathbb{N}$,

$$\mathbb{P}[Y \ge k+n \mid Y \ge k+1] = \mathbb{P}[Y \ge n].$$

Show that for each $k \ge 1$, $\mathbb{P}[Y = k] = (1 - p)^{k-1}p$, where $p = \mathbb{P}[Y = 1]$.

3. Let X_n be a binomial distribution with parameters n and p_n . Suppose that $\lim_{n\to\infty} np_n = \lambda$, where $\lambda > 0$. Let Y be a Poisson r.v. with mean $\lambda > 0$. Show that for each integer $k \ge 0$,

$$\lim_{n \to \infty} \mathbb{P}\{X_n = k\} = \mathbb{P}\{Y = k\}.$$

- 4. Let X and Y be two independent r.v.'s with a Poisson distribution and respective parameters λ_1 and λ_2 . Show that the conditional distribution of X given X + Y = n is binomial with parameters n and $p = \frac{\lambda_1}{\lambda_1 + \lambda_2}$.
- 5. Let X and Y be two independent r.v.s taking values in the nonnegative integers such that

$$P(X = k | X + Y = n) = \binom{n}{k} p^k (1 - p)^{n-k}$$

for some $0 and all <math>0 \le k \le n$. Suppose also that X + Y has a Poisson distribution with parameter $\lambda > 0$. Show that X and Y have a Poisson distributions. Hint: find the ch.f. of X and Y. The joint ch.f. of X and Y is $\varphi_{X,Y}(s,t) = E[e^{isX+itY}]$

- 6. Let X be a negative binomial r.v. with parameters r and p. Show that the ch.f. of X is $\varphi(t) = \left(\frac{e^{it}}{1-(1-p)e^{it}}\right)^r$, $t \in \mathbb{R}$.
- 7. Let X be a positive r.v. such that for each a, b > 0, $\Pr\{X > a + b\} = \Pr\{X > a\} \Pr\{X > b\}$. Show that for each $a \ge 0$, $\mathbb{P}\{X > a\} = (P\{X > 1\})^a$. Conclude that X has an exponential distribution with mean $\frac{1}{-\log P\{X > 1\}}$. Hint: first prove that for $a = \frac{k}{n}$, where k, n are positive integers, $\mathbb{P}\{X > \frac{k}{n}\} = (P\{X > 1\})^{\frac{k}{n}}$.
- 8. Prove that for each integer $n \ge 1$,

$$\int \frac{x^n}{n!} e^{-x} \, dx = -\sum_{j=0}^n e^{-x} \frac{x^j}{j!} + c.$$

9. Let X be a Gamma r.v. with parameters α and θ . Show that

$$E[X^r] = \frac{\theta^r \Gamma(r+\alpha)}{\Gamma(\alpha)}.$$

- 10. Suppose that the distribution of Y, conditional on X = x, is $N(x, x^2)$ and that the marginal distribution of X is uniform (0, 1). Find E[Y], Var(Y) and Cov(X, Y).
- 11. Let X, Y be i.i.d.r.v.'s. Suppose that:
 (i) for each s, t ∈ ℝ, sX + tY has the same distribution as √s² + t²X;
 (ii) σ² = Var(X) > 0.
 Show that X has a normal distribution with mean zero.
 Hint: Prove that the ch.f. of X is exp(-^{σ²t²}/₂).
- 12. Let X be r.v. with values in \mathbb{R}^d and with multinormal distribution with mean μ and covariance matrix Σ . Let $t_1, t_2 \in \mathbb{R}^d$. Show that t'_1X and t'_2X are independent iff $\text{Cov}(t'_1X, t'_2X) = t'_1\Sigma t_2 = 0$.