Math 501. 6-th Homework. Due Friday, November 30, 2007.

> Homework on "Common discrete and continuous distributions".

Name:

1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. Suppose that there exists $R>0$ such that $\sum_{n=0}^{\infty}\left|a_{n}\right| R^{n}<\infty$. Then,
(i) For each $|x| \leq R, f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ exist.
(ii) For each $|x|<R, g(x)=\sum_{n=1}^{\infty} a_{n} n x^{n-1}$ exist.
(iii) For each $|x|<R, f^{\prime}(x)=g(x)$.
(iv) For each $n \geq 0, a_{n}=\frac{f^{(n)}(0)}{n!}$
2. Let $0<p \leq 1$. Let Y be a r.v. Suppose that:
(i) $\mathbb{P}[Y \in \mathbb{N}]=1$.
(ii) For each $k, n \in \mathbb{N}$,

$$
\mathbb{P}[Y \geq k+n \mid Y \geq k+1]=\mathbb{P}[Y \geq n]
$$

Show that for each $k \geq 1, \mathbb{P}[Y=k]=(1-p)^{k-1} p$, where $p=\mathbb{P}[Y=1]$.
3. Let X_{n} be a binomial distribution with parameters n and p_{n}. Suppose that $\lim _{n \rightarrow \infty} n p_{n}=\lambda$, where $\lambda>0$. Let Y be a Poisson r.v. with mean $\lambda>0$. Show that for each integer $k \geq 0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left\{X_{n}=k\right\}=\mathbb{P}\{Y=k\} .
$$

4. Let X and Y be two independent r.v.'s with a Poisson distribution and respective parameters λ_{1} and λ_{2}. Show that the conditional distribution of X given $X+Y=n$ is binomial with parameters n and $p=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$.
5. Let X and Y be two independent r.v.s taking values in the nonnegative integers such that

$$
P(X=k \mid X+Y=n)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

for some $0<p<1$ and all $0 \leq k \leq n$. Suppose also that $X+Y$ has a Poisson distribution with parameter $\lambda>0$. Show that X and Y have a Poisson distributions. Hint: find the ch.f. of X and Y. The joint ch.f. of X and Y is $\varphi_{X, Y}(s, t)=$ $E\left[e^{i s X+i t Y}\right]$
6. Let X be a negative binomial r.v. with parameters r and p. Show that the ch.f. of X is $\varphi(t)=\left(\frac{e^{i t}}{1-(1-p) e^{i t}}\right)^{r}, t \in \mathbb{R}$.
7. Let X be a positive r.v. such that for each $a, b>0, \operatorname{Pr}\{X>a+b\}=\operatorname{Pr}\{X>$ $a\} \operatorname{Pr}\{X>b\}$. Show that for each $a \geq 0, \mathbb{P}\{X>a\}=(P\{X>1\})^{a}$. Conclude that X has an exponential distribution with mean $\frac{1}{-\log P\{X>1\}}$. Hint: first prove that for $a=\frac{k}{n}$, where k, n are positive integers, $\mathbb{P}\left\{X>\frac{k}{n}\right\}=(P\{X>1\})^{\frac{k}{n}}$.
8. Prove that for each integer $n \geq 1$,

$$
\int \frac{x^{n}}{n!} e^{-x} d x=-\sum_{j=0}^{n} e^{-x} \frac{x^{j}}{j!}+c .
$$

9. Let X be a Gamma r.v. with parameters α and θ. Show that

$$
E\left[X^{r}\right]=\frac{\theta^{r} \Gamma(r+\alpha)}{\Gamma(\alpha)} .
$$

10. Suppose that the distribution of Y, conditional on $X=x$, is $N\left(x, x^{2}\right)$ and that the marginal distribution of X is uniform $(0,1)$. Find $E[Y], \operatorname{Var}(Y)$ and $\operatorname{Cov}(X, Y)$.
11. Let X, Y be i.i.d.r.v.'s. Suppose that:
(i) for each $s, t \in \mathbb{R}, s X+t Y$ has the same distribution as $\sqrt{s^{2}+t^{2}} X$;
(ii) $\sigma^{2}=\operatorname{Var}(X)>0$.

Show that X has a normal distribution with mean zero.
Hint: Prove that the ch.f. of X is $\exp \left(-\frac{\sigma^{2} t^{2}}{2}\right)$.
12. Let X be r.v. with values in \mathbb{R}^{d} and with multinormal distribution with mean μ and covariance matrix Σ. Let $t_{1}, t_{2} \in \mathbb{R}^{d}$. Show that $t_{1}^{\prime} X$ and $t_{2}^{\prime} X$ are independent iff $\operatorname{Cov}\left(t_{1}^{\prime} X, t_{2}^{\prime} X\right)=t_{1}^{\prime} \Sigma t_{2}=0$.

