Math-502. 1-th Homework. Due Friday, February 15, 2008.

- 1. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of r.v.'s defined in the same probability space. Show that there exists a sequence of positive numbers $\{a_n\}$ such that $\frac{X_n}{a_n} \xrightarrow{a.s.} 0$.
- 2. Find a sequence $\{X_n\}_{n=1}^{\infty}$ of r.v.'s such that $E[X_n] \to 0$, $Var(X_n) \to 0$ and $\{X_n\}_{n=1}^{\infty}$ does not converges a.s.
- 3. Let $\{X_n\}$ be a sequence of i.i.d.r.v.'s with a N(0,1) distribution. Show that $\limsup_{n\to\infty} \frac{X_n}{\sqrt{2\log n}} = 1$ a.s. and $\liminf_{n\to\infty} \frac{X_n}{\sqrt{2\log n}} = -1$ a.s.
- 4. Let $\{a_n\}$ be a sequence of positive numbers. Let $\{X_n\}$ be a sequence of i.i.d.r.v.'s with an exponential distribution with mean one. Show that $\liminf_{n\to\infty} \frac{X_n}{a_n} = 0$ a.s. if and only if $\sum_{n=1}^{\infty} a_n = \infty$.
- 5. Find a sequence of r.v.'s {(X_n, Y_n)} such that:
 (i) X_n ^d→ X, for some r.v. X
 (ii) Y_n ^d→ Y, for some r.v. Y
 (iii) (X_n, Y_n) does not converge in distribution.
- 6. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of r.v.'s. Let $a \in \mathbb{R}$. Suppose that $n^{1/2}(X_n a) \xrightarrow{d} Z$, where Z is a some r.v. Show that for $n^{1/2}(e^{X_n} - e^a) \xrightarrow{d} e^a Z$.
- 7. Let $\{X_n\}$ be a sequence of r.v.'s suppose that $X_n \xrightarrow{d} X$, for some r.v. X with a continuous distribution function. Show that

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |P\{X_n \le x\} - P\{X \le x\}| = 0.$$

- 8. Prove or give a counterexample to: if $\{X_n\}_{n=1}^{\infty}$ is a sequence of integer valued r.v.'s such that $X_n \xrightarrow{d} X$, for some r.v. X, then $\sum_{k=-\infty}^{\infty} |P\{X_n = k\} P\{X = k\}| \to 0$.
- 9. Prove or give a counterexample to: if $\{X_n\}_{n=1}^{\infty}$ is a sequence of absolutely continuous r.v.'s and $X_n \xrightarrow{d} X$, where X is an absolutely continuous r.v., then $\int_{-\infty}^{\infty} |f_n(x) f(x)| dx \to 0$, where f_n is the p.d.f. of X_n and f is the p.d.f. of X.
- 10. Find a sequence $\{X_n\}_{n=1}^{\infty}$ of r.v.'s with a normal distribution with mean μ_n and standard deviation σ_n such that $\{X_n\}_{n=1}^{\infty}$ converges in distribution but $\{(\mu_n, \sigma_n)\}_{n=1}^{\infty}$ does not converge.