Math-502. 1-th Homework. Due Friday, February 15, 2008.

1. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of r.v.'s defined in the same probability space. Show that there exists a sequence of positive numbers $\left\{a_{n}\right\}$ such that $\frac{X_{n}}{a_{n}} \xrightarrow{\text { a.s. }} 0$.
2. Find a sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of r.v.'s such that $E\left[X_{n}\right] \rightarrow 0, \operatorname{Var}\left(X_{n}\right) \rightarrow 0$ and $\left\{X_{n}\right\}_{n=1}^{\infty}$ does not converges a.s.
3. Let $\left\{X_{n}\right\}$ be a sequence of i.i.d.r.v.'s with a $N(0,1)$ distribution. Show that $\limsup _{n \rightarrow \infty} \frac{X_{n}}{\sqrt{2 \log n}}=1$ a.s. and $\lim \inf _{n \rightarrow \infty} \frac{X_{n}}{\sqrt{2 \log n}}=-1$ a.s.
4. Let $\left\{a_{n}\right\}$ be a sequence of positive numbers. Let $\left\{X_{n}\right\}$ be a sequence of i.i.d.r.v.'s with an exponential distribution with mean one. Show that $\liminf _{n \rightarrow \infty} \frac{X_{n}}{a_{n}}=0$ a.s. if and only if $\sum_{n=1}^{\infty} a_{n}=\infty$.
5. Find a sequence of r.v.'s $\left\{\left(X_{n}, Y_{n}\right)\right\}$ such that:
(i) $X_{n} \xrightarrow{d} X$, for some r.v. X
(ii) $Y_{n} \xrightarrow{d} Y$, for some r.v. Y
(iii) $\left(X_{n}, Y_{n}\right)$ does not converge in distribution.
6. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of r.v.'s. Let $a \in \mathbb{R}$. Suppose that $n^{1 / 2}\left(X_{n}-a\right) \xrightarrow{d} Z$, where Z is a some r.v. Show that for $n^{1 / 2}\left(e^{X_{n}}-e^{a}\right) \xrightarrow{d} e^{a} Z$.
7. Let $\left.\left\{X_{n}\right)\right\}$ be a sequence of r.v.'s suppose that $X_{n} \xrightarrow{d} X$, for some r.v. X with a continuous distribution function. Show that

$$
\lim _{n \rightarrow \infty} \sup _{x \in \mathbb{R}}\left|P\left\{X_{n} \leq x\right\}-\mathrm{P}\{X \leq x\}\right|=0
$$

8. Prove or give a counterexample to: if $\left\{X_{n}\right\}_{n=1}^{\infty}$ is a sequence of integer valued r.v.'s such that $X_{n} \xrightarrow{d} X$, for some r.v. X, then $\sum_{k=-\infty}^{\infty}\left|P\left\{X_{n}=k\right\}-\mathrm{P}\{X=k\}\right| \rightarrow 0$.
9. Prove or give a counterexample to: if $\left\{X_{n}\right\}_{n=1}^{\infty}$ is a sequence of absolutely continuous r.v.'s and $X_{n} \xrightarrow{d} X$, where X is an absolutely continuous r.v., then $\int_{-\infty}^{\infty} \mid f_{n}(x)-$ $f(x) \mid d x \rightarrow 0$, where f_{n} is the p.d.f. of X_{n} and f is the p.d.f. of X.
10. Find a sequence $\left\{X_{n}\right\}_{n=1}^{\infty}$ of r.v.'s with a normal distribution with mean μ_{n} and standard deviation σ_{n} such that $\left\{X_{n}\right\}_{n=1}^{\infty}$ converges in distribution but $\left\{\left(\mu_{n}, \sigma_{n}\right)\right\}_{n=1}^{\infty}$ does not converge.
