Math 502. 3-rd Homework. Due Friday, March 7, 2008.

Name:

1. Given a random sample of size n from the density

$$f(x|\theta) = \begin{cases} \frac{3x^2}{\theta^3} & \text{if } 0 < x < \theta, \\ 0 & \text{else.} \end{cases}$$

where $\theta > 0$ is unknown parameter.

- (a) Find the mle of θ .
- (b) Find the method of moments estimator of θ .
- (c) Which of the two estimators above has smallest mean square error?
- 2. Let X_1, \ldots, X_n denote a random sample from the density

$$f(x|\theta) = \begin{cases} \theta x^{\theta-1} & \text{if } 0 < x < 1, \\ 0 & \text{else.} \end{cases}$$

where $\theta > 0$.

- (a) Find the mle $\hat{\theta}_n$ of θ .
- (b) Prove that this estimator is a consistent estimator of θ .
- (c) Show that $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{d} N(0, \sigma^2(\theta))$, for some function $\sigma^2(\theta)$. Determine $\sigma^2(\theta)$.
- 3. For the distribution in 1.
 - (a) Find the method of moments estimator $\hat{\theta}_n^*$ of θ .
 - (b) Prove that this estimator is a consistent estimator of θ .
 - (c) Show that $\sqrt{n}(\hat{\theta}_n^* \theta) \xrightarrow{d} N(0, (\sigma^*(\theta))^2)$, for some function $\sigma^{2,*}(\theta)$. Determine $(\sigma^*(\theta))^2$.
 - (d) Which one is smaller, $\sigma^2(\theta)$ or $(\sigma^*(\theta))^2$, where $\sigma^2(\theta)$ is defined in Problem 1(c)?
- 4. Let X₁,..., X_n be a random sample from a distribution with finite fourth moment.
 (a) Show that ¹/_n Σⁿ_{j=1}(X_j X̄)⁴ is a consistent estimator of E[(X μ)⁴].
 (b) Find E[¹/_n Σⁿ_{j=1}(X_j X̄)⁴]. Show that ¹/_n Σⁿ_{j=1}(X_j X̄)⁴ is a biased estimator of E[(X μ)⁴].
- 5. Let X_1, \ldots, X_n be a random sample from a distribution with finite fourth moment. Suppose that the population mean μ is known.
 - (a) Find the MSE of $\frac{1}{n-1}\sum_{j=1}^{n} (X_j \bar{X})^2$ as an estimator of σ^2 .
 - (b) Show that $\sqrt{n}(\frac{1}{n-1}\sum_{j=1}^{n}(X_j-\bar{X})^2-\sigma^2) \xrightarrow{d} N(0,S)$. Determine S.

(Notice that the distribution is not necessarily normal.)

6. Given a random sample of size n from the density

$$f(x) = \begin{cases} \frac{4\theta^3}{x^4} & \text{if } \theta < x, \\ 0 & \text{else.} \end{cases}$$

where $\theta > 0$ is unknown parameter.

- (a) Find the method of moments estimator $\hat{\theta}_n$ of θ .
- (b) Prove that this estimator consistent of θ .
- (c) Show that $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{d} N(0, \sigma^2(\theta))$, for some function $\sigma^2(\theta)$. Determine $\sigma^2(\theta)$.
- 7. Given a random sample of size n from the density

$$f(x) = \begin{cases} \frac{4\theta^3}{x^4} & \text{if } \theta < x, \\ 0 & \text{else.} \end{cases}$$

where $\theta > 0$ is unknown parameter.

- (a) Find the mle $\hat{\theta}_n$ of θ .
- (b) Prove that this estimator is a biased estimator of θ .
- (c) Find a constant a such that $aX_{(1)}$ is an unbiased estimator of θ .
- (d) Find the constant b_0 such that $b_0X_{(1)}$ minimizes $MSE(bX_{(1)}, \theta)$, over $b \in \mathbb{R}$.
- 8. Let X_1, \ldots, X_n be a random sample from a normal distribution. Show that the MSE of $\frac{1}{n} \sum_{j=1}^{n} (X_j \mu)^2$ as an estimator of σ^2 is smaller than the MSE of $s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j \bar{x})^2$ as an estimator of σ^2 .
- 9. Let X_1, \ldots, X_n be a random sample from a normal distribution with unknown mean μ and unknown variance $\sigma^2 > 0$. Find the constant a_0 such that $a_0 \frac{1}{n} \sum_{j=1}^n (X_j \bar{X})^2$ minimizes $MSE(a_{\bar{n}}^1 \sum_{j=1}^n (X_j \bar{X})^2, \sigma^2)$, over $a \in \mathbb{R}$.
- 10. Let X_1, \ldots, X_n be a random sample from a normal distribution with unknown mean μ and unknown variance $\sigma^2 > 0$. Find a such that $as = a\sqrt{\frac{1}{n-1}\sum_{j=1}^n (X_j \bar{X})^2}$ is an unbiased estimator of σ .