Math 502. 4-th Homework. Due Monday, March 17, 2008.

Name:

1. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of r.v.'s with mean one and variance four. Show that

$$\sqrt{n}\left(\frac{\sum_{j=1}^{n} X_j + 1}{n - 3 + \sum_{j=1}^{n} X_j} - \frac{n+1}{2n-5}\right) \xrightarrow{\mathrm{d}} N(0, \sigma^2),$$

for some σ^2 . Determine σ^2 .

2. Let X_1, \ldots, X_n denote a random sample from the density

$$f(x|\theta) = \begin{cases} \theta x^{\theta - 1} & \text{if } 0 < x < 1, \\ 0 & \text{else.} \end{cases}$$

where $\theta > 0$.

(i) Find the Fisher information number.

(ii) Find the Cramér–Rao lower bound for the unbiased estimators of θ .

(iii) Find $\hat{\theta}$ the MLE of θ . Find its variance. Show that $\hat{\theta}$ does not attain the Cramér–Rao lower bound for the unbiased estimators of θ .

- 3. Let X_1, \ldots, X_n be a random sample from a geometric distribution with parameter $0 , i.e. <math>P\{X = x\} = (1 p)^x p$, for $x = 0, 1, \ldots$, Find the mle of p. Find the Cramer-Rao lower bound for the unbiased estimators of p. Is the CRLB attained for the unbiased estimators of p?
- 4. Let X₁,..., X_n be a random sample from f(x|θ) = θ(1 + x)^{-(1+θ)}, x, θ > 0.
 (i) Find the Cramer–Rao lower bound for the unbiased estimators of θ. Is the CRLB for the unbiased estimators of θ attained?
 (ii) Find the Cramer–Rao lower bound for the unbiased estimators of θ. Is the CRLB for the unbiased estimators of θ² attained?
- 5. Let X₁,..., X_n be a random sample from the pdf f(x|θ) = ¹/_{2θ}e^{-|x|/θ}, x ∈ IR, θ > 0.
 (i) Find the Cramer–Rao lower bound for the unbiased estimators of θ. Is the CRLB for the unbiased estimators of θ attained?
 (ii) Find the Cramer–Rao lower bound for the unbiased estimators of θ. Is the CRLB for the unbiased estimators of θ² attained?

6. Let $\{X_n\}$ be a sequence of i.i.d.r.v.'s with finite second moment and positive variance. Let $\bar{X} = \frac{1}{n} \sum_{j=1}^{n} X_j$ and let $s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \bar{x})^2$. Show that

$$n^{1/2}\left(\frac{\bar{X}}{s}-\frac{\mu}{\sigma}\right) \stackrel{\mathrm{d}}{\to} N(0,b^2)$$

for some b^2 . Find b^2 .

7. Let $\{X_n\}$ be a sequence of i.i.d.r.v.'s with finite sixth moment. The sample the skewness of X is defined as $\hat{k}_3 = \frac{\frac{1}{n}\sum_{j=1}^n (X_j - \bar{X})^3}{(\frac{1}{n}\sum_{j=1}^n (X_j - \bar{X})^2)^{3/2}}$. The population skewness is defined as $k_3 = \frac{E[(X-\mu)^3]}{\sigma^3}$. Find the limit distribution of

$$n^{1/2}(\hat{k}_3 - k_3)$$

8. Let X_1, \ldots, X_n be a random sample from $f(x|\theta) = \frac{1}{\theta}mx^{m-1}e^{-x^m/\theta}$, x > 0, where m > 0 is known and $\theta > 0$ is unknown. Find the mle $\hat{\theta}$ of θ . Find the CRLB for the unbiased estimators of θ . Show that $\hat{\theta}$ is an unbiased estimator of θ . Show that the mle attains the CRLB. Show that for each $\theta > 0$,

$$n^{1/2}(\hat{\theta} - \theta) \xrightarrow{\mathrm{d}} N\left(0, \frac{1}{I(\theta)}\right).$$

9. Let X₁,..., X_n be a random sample from f(x|θ) = ¹/_θmx^{m-1}e^{-x^m/θ}, x > 0, where m > 0 is known and θ > 0 is unknown.
(a) Find the method of moments estimator θ̂_n of θ. Show that n^{1/2}(θ̂_n - θ) → N(0, b₁(θ)), for some b₁(θ). Determine b₁(θ).
(b) Find the maximum likelihood estimator θ̂_n of θ. Show that n^{1/2}(θ̂_n - θ) → N(0, b₂(θ)), for some b₂(θ). Determine b₂(θ).
(c) For which values of θ, b₂(θ) < b₁(θ)?

10. Given a random sample of size n from the density

$$f(x) = \begin{cases} \frac{3\theta^3}{x^4} & \text{if } \theta < x, \\ 0 & \text{else.} \end{cases}$$

where $\theta > 0$ is unknown parameter.

(a) Find the method of moments estimator $\hat{\theta}_n$ of θ . Show that $n^{1/2}(\hat{\theta}_n - \theta) \xrightarrow{d} N(0, b(\theta))$, for some $b(\theta)$. Determine $b(\theta)$.

(b) Find the maximum likelihood estimator $\hat{\theta}_n$ of θ . Show that $n(\hat{\theta}_n - \theta) \xrightarrow{d} U$, for some r.v. U. Determine the cdf of U.

11. Let X_1, \ldots, X_n denote a random sample from the density

$$f(x|\theta) = \begin{cases} \frac{\alpha x^{\alpha-1}}{\theta^{\alpha}} & \text{if } 0 < x < \theta, \\ 0 & \text{else.} \end{cases}$$

where $\theta > 0$ is unknown and $\alpha > 0$ is a known parameter.

(a) Find the method of moments estimator $\hat{\theta}_n$ of θ . Show that $n^{1/2}(\hat{\theta}_n - \theta) \xrightarrow{d} N(0, b(\theta))$, for some $b(\theta)$. Determine $b(\theta)$.

(b) Find the maximum likelihood estimator $\hat{\theta}_n$ of θ . Show that $n(\hat{\theta}_n - \theta) \xrightarrow{d} U$, for some r.v. U. Determine the cdf of U.