Math 502. 5-th Homework. Due Friday, April 4, 2008.

Show all your work. If a question says find a complete sufficient statistic, you need to prove that the statistic is complete and sufficient.

- 1. Let X_1, \ldots, X_n be a random sample from a Poisson distribution with parameter, $\theta > 0$. Find a minimal sufficient statistic for θ . Which one of the next statistics are sufficient for θ : $T_1(X_1, \ldots, X_n) = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2), T_2(X_1, \ldots, X_n) = \sum_{i=1}^n X_i,$ $T_3(X_1, \ldots, X_n) = \sum_{i=1}^n X_i^2$? Why?
- 2. Let X_1, \ldots, X_n be a random sample from a beta distribution with parameters α and β : $\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$

$$f(x|\alpha,\beta) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

Find a minimal sufficient statistic for (α, β) . Find a complete sufficient statistic for (α, β) .

- 3. Let X_1, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ with μ and σ^2 unknown. Find the UMVUE of σ^p , where p > 0.
- 4. Let X_1, \ldots, X_n be a random sample from a $N(\mu, \sigma^2)$ with μ and σ^2 unknown. Find the UMVUE of σ^4 . Find the variance of the UMVUE of σ^4 . Find the CRLB for the unbiased estimators of σ^4 . Compare the variance of the UMVUE of σ^4 with the CRLB for the unbiased estimators of σ^4 .
- 5. Let X_1, \ldots, X_n be a random sample from a $U[\theta, \theta + 1]$. Show that $T(X_1, \ldots, X_n) = (\min_{1 \le i \le n} X_i, \max_{1 \le i \le n} X_i)$ is a minimal sufficient statistic but it is not complete.
- 6. Let X_1, \ldots, X_n be a random sample from $f(x|\theta) = \frac{2x}{\theta^2}$, $0 < x < \theta$. Find a complete sufficient statistic for θ . Justify that the statistic is complete and sufficient. Find the UMVUE of θ . Find the UMVUE of θ^2 .
- 7. Suppose that X_1 and X_2 are iid observations from the pdf $f(x, \alpha) = \alpha x^{\alpha-1} e^{-x^{\alpha}}$, $x > 0, \alpha > 0$. Show that $(\log X_1)/(\log X_2)$ is an ancillary statistic.
- 8. Consider a random sample of size n from a Gamma $(2,\beta)$, and let $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$ and $\tilde{X} = (\prod_{i=1}^{n} X_i)^{1/n}$. Show that $T = \bar{X}/\tilde{X}$ is an ancillary statistic for β .

- 9. Let X_1, \ldots, X_n be a random sample from a uniform distribution on $(0, \theta)$. Show that $X_{(n)}$ is a complete and sufficient statistic for θ . Find the UMVUE for θ^p , where p > 0.
- 10. Let X_1, \ldots, X_n be a random sample from a exponential distribution with parameter $\theta > 0$. Find the CRLB for the unbiased estimators of θ^2 . Find the UMVUE for θ^2 . Show that the variance of UMVUE for θ^2 is bigger than the CRLB for the unbiased estimators of θ^2 .
- 11. Let X_1, \ldots, X_n be a random sample from $f(x|\theta) = \frac{2\theta^2}{x^3}$, if $x > \theta > 0$. Find a complete sufficient statistic. Find a UMVUE for θ . Find a UMVUE for θ^2 . Show that $T(X_1, \ldots, X_n) = \frac{\bar{x}}{s}$ is an ancillary statistic, where $\bar{x} = \frac{1}{n} \sum_{j=1}^n X_j$ and $s^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j \bar{x})^2$. Show that $X_{(1)}$ and $T(X_1, \ldots, X_n)$ are independent
- 12. Let X_1, \ldots, X_n be a random sample from the density $f(x|\theta) = e^{-(x-\theta)}$, $x > \theta$. Find a complete and sufficient statistic for θ . Find a UMVUE for θ . Show that $X_{(1)} = \min_{1 \le i \le} X_i$ is a complete sufficient statistic. Show that $X_{(1)}$ and s^2 are independent. Let $X_{(n)} = \max(X_1, \ldots, X_n)$ and let $R = X_{(n)} - X_{(1)}$. R is called the sample range. Show that $X_{(1)}$ and R are independent.