Math-571. 1st Homework. Due Thursday, February 8, 2007.

- 1. Let (Ω, \mathcal{F}) be a measurable space. A finitely additive function μ on \mathcal{F} is a function $\mu : \mathcal{F} \to \mathbb{R}$ such that $\mu[\bigcup_{j=1}^{m} A_j] = \sum_{j=1}^{m} \mu[A_j]$, for each $\{A_j\}_{j=1}^{m} \subset \mathcal{F}$, which are pairwise disjoint. Let μ be a nonnegative finitely additive function on \mathcal{F} such that if $\{A_n\}$ is a sequence in \mathcal{F} such that $A_n \searrow \emptyset$, then $\mu(A_n) \searrow 0$. Show that μ is a measure in (Ω, \mathcal{F}) .
- 2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Let

$$\overline{\mathcal{F}} = \{A \cup B \in \Omega : A \in \mathcal{F}, \text{ there exists } C \in \mathcal{F}, \text{ such that } B \subset C \text{ and } \mu(C) = 0\}.$$

(i) Show that $\overline{\mathcal{F}}$ is a σ -field.

(ii) Given $A \cup B \in \overline{\mathcal{F}}$, define $\overline{\mu}(A \cup B) = \mu(A)$, where $A \in \mathcal{F}$ and there exists $C \in \mathcal{F}$, such that $B \subset C$ and $\mu(C) = 0$. Show that $\overline{\mu}$ is well defined.

- (iii) Show that $\overline{\mu}$ is a complete measure on $\overline{\mathcal{F}}$.
- (iv) Show that for each $A \in \mathcal{F}$, $\overline{\mu}(A) = \mu(A)$.
- 3. Show that for any events A_1, \ldots, A_n ,

$$P[\bigcap_{j=1}^{n} A_j] \ge \sum_{j=1}^{n} P[A_j] - (n-1).$$

- 4. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability measurable space. Let $\{A_n\}$ be a sequence of measurable events such that $\mathbf{P}[A_n] = 1$ for each $n \ge 1$. Show that $\mathbf{P}[\bigcap_{n=1}^{\infty} A_n] = 1$.
- 5. Let (Ω, \mathcal{F}, P) be a probability space. Let $A_1, \ldots, A_n \in \mathcal{F}$, where $n \geq 2$. Prove that

$$P[\bigcup_{i=1}^{n} A_i] \ge \sum_{i=1}^{n} P[A_i] - \sum_{1 \le i_1 < i_2 \le n}^{n} P[A_{i_1} \cap A_{i_2}].$$