Math-571. 2-nd Homework. Due Tuesday February 20, 2007.

1. Given $A \subset \mathbb{R}$, let

$$
m^{*}(A)=\inf \left\{\sum_{j=1}^{\infty}\left(b_{j}-a_{j}\right): A \subset \cup_{j=1}^{\infty}\left(a_{j}, b_{j}\right), a_{j}<b_{j}, a_{j}, b_{j} \in \mathbb{R}\right\}
$$

Show that:
(i) m^{*} is an outer measure on \mathbb{R}.
(ii) $\mathcal{B}(\mathbb{R}) \subset \mathcal{M}\left(\mu^{*}\right)$.
(iii) For each $a<b, m^{*}[a, b]=b-a$.
2. Given a measure μ on (Ω, \mathcal{F}), the outer measure μ^{*} of μ is defined as

$$
\mu^{*}(E)=\inf \{\mu(A): E \subset A, A \in \mathcal{F}\}, E \subset \Omega
$$

Show that for each set $E \subset \Omega$, there exists a set $A \in \mathcal{F}$ such that $E \subset A$ and $\mu^{*}(E)=\mu(A)$.
3. Let m be the Lebesgue measure in $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$. Let A be a Borel set of \mathbb{R}^{d} and let $a \in \mathbb{R}^{d}$. Prove that $a+A$ is a Borel set of \mathbb{R}^{d} and $m(A)=m(a+A)$.
4. Suppose that a r.v. X satisfies that for each $a \in \mathbb{R}, \mathbb{P}\{X \leq a\}=\mathbb{P}\{-X \leq a\}$. Show that for each set $A \in \mathcal{B}, \mathbb{P}\{X \in A\}=\mathbb{P}\{-X \in A\}$.
5. Let X_{1}, \ldots, X_{n} be independent identically distributed r.v.'s. Show that for each set $A \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and each permutation σ of $\{1, \ldots, n\}, \mathbb{P}\left\{\left(X_{1}, \ldots, X_{n}\right) \in A\right\}=$ $\mathbb{P}\left\{\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right) \in A\right\}$.
6. Prove or give a counterexample of the following proposition: " Let X_{1} and X_{2} be two r.v.'s. Show that X_{1} and X_{2} and independent r.v.'s if and only if for each $a<b$, $\mathbb{P}\left[a<X_{1} \leq b, a<X_{2} \leq b\right]=\mathbb{P}\left[a<X_{1} \leq b\right] \mathbb{P}\left[a<X_{2} \leq b\right]$."

