## Math-571. 3-th Homework. Due Tuesday, March 6, 2007.

1. Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x^{2}} & \text { if } 0<x \leq 1 \\ 0 & \text { if } x=0\end{cases}
$$

Show that $f$ is continuous in $[0,1]$ and differentiable in $(0,1)$. Show that $\int_{0}^{1} f^{\prime}(x) d x$ does not exists.
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { else }\end{cases}
$$

Show that $f$ is Borel measurable. Find $\int_{0}^{1} f(x) d x$.
3. (i) A differentiable function $\varphi$ on an open interval $I$ is convex on $I$ if and only if $\varphi^{\prime}$ is nondecreasing on $I$. (ii) A second differentiable function $\varphi$ on an open interval $I$ is convex on $I$ if and only if $\varphi^{\prime \prime} \geq 0$ on $I$.
4. Let $X$ be a r.v. Let $I=\left\{p \geq 0: E\left[|X|^{p}\right]<\infty\right\}$.
(i) Given $a>0$, find a r.v. such that $\left\{p \geq 0: E\left[|X|^{p}\right]<\infty\right\}=[0, a)$.
(ii) Given $a>0$, find a r.v. such that $\left\{p \geq 0: E\left[|X|^{p}\right]<\infty\right\}=[0, a]$.
(iii) Find a r.v. such that $\left\{p \geq 0: E\left[|X|^{p}\right]<\infty\right\}=[0, \infty)$.
5. Let $\varphi: I \rightarrow \mathbb{R}$ be a function, where $I$ is an open interval of $\mathbb{R}$. Suppose that for each $a \in I$, there exists a constant $\beta_{a}$ such that $\beta_{a}(x-a) \leq \varphi(x)-\varphi(a)$ for each $x \in I$. Show that $\varphi$ is convex. Prove that a function $\varphi: I \rightarrow \mathbb{R}$ is convex iff there exists a set $T$ and $a_{t}, b_{t} \in \mathbb{R}$ such that for each $x \in I, \varphi(x)=\sup _{t \in T}\left(a_{t}+b_{t} x\right)$.
6. Let $X$ be a r.v. in a probability space $(\Omega, \mathcal{F}, \mathrm{P})$. Prove that if $X \in L_{\infty}(\Omega, \mathcal{F}, \mathrm{P})$, then $\lim _{p \rightarrow \infty}\|X\|_{p}=\|X\|_{\infty}$ and $\lim _{n \rightarrow \infty} \frac{E\left[\mid X X^{p+1}\right]}{E\left[\left.X\right|^{p}\right]}=\|X\|_{\infty}$. Prove that if $X \notin$ $L_{\infty}(\Omega, \mathcal{F}, \mathrm{P})$, then $\lim _{p \rightarrow \infty}\|X\|_{p}=\infty$.
7. (Extended dominated convergence theorem) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ and $\left\{g_{n}\right\}_{n=1}^{\infty}$ be two sequences of measurable functions on the measure space $(\Omega, \mathcal{F}, \mu)$. Suppose that:
(i) $\left|f_{n}\right| \leq g_{n}$ a.e. $(\mu)$.
(ii) $f_{n} \rightarrow f$ a.e.
(iii) $g_{n} \rightarrow g$ a.e.
(iv) $\int g_{n} d \mu \rightarrow \int g d \mu<\infty$.

Show that $\int f_{n} d \mu \rightarrow \int f d \mu$.
8. Let $X$ and $Y$ be two r.v.'s. Let $p>0$. Show that:
(i) If $E\left[|X|^{p}\right]<\infty$ and $E\left[|X|^{p}\right]<\infty$, then $E\left[|X+Y|^{p}\right]<\infty$.
(ii) If $X$ and $Y$ are independent and $E\left[|X+Y|^{p}\right]<\infty$, then $E\left[|X|^{p}\right]<\infty$ and $E\left[|X|^{p}\right]<\infty$.
(iii) Find two r.v.'s $X$ and $Y$ such that $E\left[|X+Y|^{p}\right]<\infty$ but $E\left[|X|^{p}\right]<\infty$.
9. Let $f$ be the function in $[0,1] \times[0,1]$ defined by

$$
f(x, y)= \begin{cases}2^{2 n} & \text { if } 2^{-n}<x \leq 2^{-n+1}, 2^{-n}<y \leq 2^{-n+1} \text { for some } n \geq 1 \\ -2^{2 n+1} & \text { if } 2^{-n-1}<x \leq 2^{-n}, 2^{-n}<y \leq 2^{-n+1} \text { for some } n \geq 1 \\ 0 & \text { else }\end{cases}
$$

Show that

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y=0, \int_{0}^{1} \int_{0}^{1} f(x, y) d y d x=1
$$

and

$$
\int_{0}^{1} \int_{0}^{1}|f(x, y)| d y d x=\infty
$$

10. Find the mean and the variance of the r.v. with c.d.f.

$$
F(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{x+2}{8} & \text { if } 0 \leq x<1 \\ \frac{3 x^{2}+4}{16} & \text { if } 1 \leq x<2 \\ 1 & \text { if } 2 \leq x\end{cases}
$$

Warning: $X$ has a mixed distribution.

