Math-571. 4-th Homework. Due Tuesday, March 20, 2007.

- 1. Let $L_0(\Omega, \mathcal{F}, P)$ be the vector space consisting by the r.v.'s defined on the probability space (Ω, \mathcal{F}, P) . Let $\mathcal{L}_0(\Omega, \mathcal{F}, P)$ be the classes of equivalence of $L_0(\Omega, \mathcal{F}, P)$ with respect to the equivalence relation $X \sim Y$ iff X = Y a.s. Show that there is no norm $\|\cdot\|$ on $\mathcal{L}_0(\Omega, \mathcal{F}, P)$ such that $X_n \xrightarrow{P} X$ iff $\|X_n - X\| \to 0$.
- 2. Prove that there exists no distance d in $\mathcal{L}_0(\Omega, \mathcal{F}, \mu)$ such that $d(X_n, X) \to 0$ iff $X_n \stackrel{\text{a.s.}}{\to} X$.
- 3. Consider the probability space $([0,1], \mathcal{B}([0,1]), m)$, where *m* is the Lebesgue measure. Let $X_n = \frac{n}{\log n} I(0, \frac{1}{n}), n \geq 3$. Show that $\{X_n\}_{n=1}^{\infty}$ is uniformly integrable, $X_n \xrightarrow{\Pr} 0$ and $E[X_n] \to 0$, but $E[\sup_{n\geq 1} |X_n|] = \infty$.
- 4. Consider the probability space $([0,1], \mathcal{B}([0,1]), m)$, where *m* is the Lebesgue measure. Let $X_n = nI(0, \frac{1}{n}) - nI(\frac{1}{n}, \frac{2}{n})$. Show that $X_n \xrightarrow{\Pr} 0$ and $E[X_n] \to 0$, but $\{X_n\}_{n=1}^{\infty}$ is not uniformly integrable,
- 5. Let $\{X_n\}_{n=1}^{\infty}$ be a uniformly integrable collection of r.v.'s. Show that $\left\{\frac{\sum_{j=1}^{n} X_j}{n}\right\}_{n=1}^{\infty}$ is uniformly integrable.
- 6. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of r.v.'s defined in the same probability space. Show that there exists a sequence of positive numbers $\{a_n\}_{n=1}^{\infty}$ such that $\frac{X_n}{a_n} \xrightarrow{\text{a.s.}} 0$.
- 7. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of nonnegative r.v.'s. Suppose that that for some $0 < \alpha < \beta, E[X_n^{\alpha}] \to 1$ and $E[X_n^{\beta}] \to 1$. Show that $X_n \xrightarrow{\Pr} 1$.
- 8. Prove or give a counterexample to: if $\{F_n\}_{n=1}^{\infty}$ is a sequence of c.d.f.'s such that for each $x \in \mathbb{R}$, $\lim_{m,n\to\infty} (F_n(x) F_m(x)) = 0$, then there exists a c.d.f. F such that $F_n \xrightarrow{d} F$.
- 9. Prove or give a counterexample to: if $\{X_n\}_{n=1}^{\infty}$ is a sequence of absolutely continuous r.v.'s and $X_n \xrightarrow{d} X$, where X is an absolutely continuous r.v., then $\int_{-\infty}^{\infty} |f_n(x) f(x)| dx \to 0$, where f_n is the p.d.f. of X_n and f is the p.d.f. of X.
- 10. Prove or give a counterexample to: if $\{X_n\}_{n=1}^{\infty}$ is a sequence of integer valued r.v.'s such that $X_n \xrightarrow{d} X$, for some r.v. X, then $\sum_{k=-\infty}^{\infty} |P\{X_n = k\} P\{X = k\}| \to 0$.