- 1. Let $\{X_n\}$ be a sequence of r.v.'s. Let $S_n = \sum_{j=1}^n X_j$. Let $p \ge 1$. Show that: (i) $X_n \xrightarrow{\text{a.s.}} 0$ implies $\frac{S_n}{n} \xrightarrow{\text{a.s.}} 0$. (ii) $X_n \xrightarrow{L_p} 0$ implies $\frac{S_n}{n} \xrightarrow{L_p} 0$. (iii) $X_n \xrightarrow{P} 0$ does not imply $\frac{S_n}{n} \xrightarrow{P} 0$.
- 2. Let $\{X_j\}_{j=1}^{\infty}$ be a sequence of nonnegative independent r.v.'s. Prove that the following conditions are equivalent:
 - (i) $\sum_{j=1}^{\infty} X_j$ converges a.s.
 - (ii) $\sum_{j=1}^{\infty} \mathbb{P}\{X_j \ge 1\} < \infty$ and $\sum_{j=1}^{\infty} E[X_j I(X_j < 1)] < \infty$. (iii) $\sum_{j=1}^{\infty} E\left[\frac{X_j}{X_j + 1}\right] < \infty$.
- 3. Let X be a r.v. such that for each $A \in \mathcal{B}(\mathbb{R})$, $P\{X \in A\}$ is either zero or one. Show that there exists $c \in \mathbb{R}$ such that $P\{X = c\} = 1$.
- 4. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of i.i.d.r.v.'s from a distribution with mean zero. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Show that $\sum_{n=1}^{\infty} a_n X_n$ converges a.s. if and only if $\sum_{n=1}^{\infty} a_n^2 < \infty$.
- 5. Let $\{g_n\}_{n=1}^{\infty}$ be a sequence of i.i.d.r.v.'s from a standard normal distribution. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Show that $\sum_{j=1}^{\infty} a_n g_n^2$ converges a.s. if and only if $\lim_{n\to\infty}\sum_{j=1}^n a_j$ exists and $\sum_{n=1}^{\infty} a_n^2 < \infty$.
- 6. Let X_1 and X_2 be two independent r.v.'s. Suppose that $X_1 + X_2$ is a degenerate r.v. Show that X_1 and X_2 are degenerate.
- 7. Let $\{X_n\}$ be a sequence of i.i.d.r.v.'s. Prove that $\limsup_{n\to\infty} \frac{|X_n|}{n} = \infty$ a.s. if and only if $E[|X_1|] = \infty$.
- 8. Let $\{X_n\}$ be a sequence of i.i.d.r.v.'s. Show that $\limsup_{n\to\infty} |X_n| = ||X_1||_{\infty}$ a.s.
- 9. Show that if $X \stackrel{d}{\sim} N(0,1)$, then for each x > 0,

$$\frac{x}{1+x^2} \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} \le \mathbf{P}\{X \ge x\} \le e^{-\frac{x^2}{2}}.$$

Hint: use that that for any r.v. X and any t > 0,

$$\mathbf{P}\{X \ge t\} \le \inf_{\lambda \ge 0} e^{-\lambda t} E[e^{\lambda X}].$$

10. Let $\{X_n\}$ be a sequence of i.i.d.r.v.'s with a N(0, 1) distribution. Show that $\limsup_{n\to\infty} \frac{X_n}{\sqrt{2\log n}} = 1$ a.s. and $\liminf_{n\to\infty} \frac{X_n}{\sqrt{2\log n}} = -1$ a.s.