Math-571. 6-th Homework. Due Thursday, April 26, 2007.

- 1. Let $\varphi(t)$ be the ch.f. of a r.v. X. Show that if $|\varphi(t)| = 1$ for each t in a neighborhood of zero, then X is degenerate.
- 2. Show that $\varphi(t) = \frac{1}{1+t^2}$ is a ch.f.
- 3. Prove that for each $\alpha > 2$, $\varphi(t) = e^{-|t|^{\alpha}}$ is not a ch.f.
- 4. Let $\{X_{n,j} : 1 \leq j \leq k_n, n \geq 1\}$ be a triangular array of is rowwise independent r.v.'s. Suppose that the distribution of $X_{n,j}$ is uniform in the interval (-j, j+n). Find constants a_n, b_n such that $\frac{S_n-b_n}{a_n} \xrightarrow{d} N(0,1)$. You need to prove that $\frac{S_n-b_n}{a_n} \xrightarrow{d} N(0,1)$.
- 5. Let $\{X_j\}$ be a sequence of independent r.v.'s. Suppose that:
 - (i) There exists a constant M such that $|X_j| \leq M$ a.s. for each $j \geq 1$.
 - (ii) $\sum_{j=1}^{\infty} \operatorname{Var}(X_j) = \infty.$ Then, $\frac{\sum_{j=1}^{n} (X_j - E[X_j])}{\sqrt{\sum_{j=1}^{n} \operatorname{Var}(X_j)}} \xrightarrow{\mathrm{d}} N(0, 1).$
- 6. Let $\{X_j\}$ be a sequence of independent r.v.'s. Suppose that: (i) For each $j \ge 1$, $E[X_j] = 0$ and $E[X_j^2] = 1$. (ii) There are constants M and p > 2 such that $E[|X_j|^p] \le M$, for each $j \ge 1$. Then, $n^{-1/2} \sum_{j=1}^n (X_j - E[X_j]) \xrightarrow{d} N(0, 1)$.
- 7. Let $\{X_j\}$ be a sequence of independent r.v.'s such that

$$P{X_j = -j} = P{X_j = j} = \frac{1}{2j^2}$$
, and $P{X_j = -1} = P{X_j = 1} = \frac{j^2 - 1}{2j^2}$.

Show that $n^{-1} \sum_{j=1}^{n} \operatorname{Var}(X_j) \to 2$, $n^{-1/2} \sum_{j=1}^{n} (X_j - E[X_j]) \xrightarrow{d} N(0, 1)$ and the conditions in the Lindeberg–Feller theorem are not satisfied.

8. Let $\{X_j\}$ be a sequence of independent r.v.'s such that

$$P{X_j = -j^{1/2}} = P{X_j = j^{1/2}} = \frac{1}{2j}, \text{ and } P{X_j = 0} = \frac{j-1}{j}$$

Show that $E[X_j] = 0$, $Var(X_j) = 1$ and $n^{-1/2} \sum_{j=1}^n (X_j - E[X_j])$ converges in distribution, but the limit does not have a normal distribution.

9. Let $\{X_i\}$ be a sequence of symmetric i.i.d.r.v.'s with

$$\Pr\{|X_1| \ge t\} = \frac{1}{(t+1)\ln((t+1)e)} \text{ for } t \ge 0.$$

Show that $n^{-1} \sum_{j=1}^{n} X_j \xrightarrow{P} 0$ but, it is not true that $n^{-1} \sum_{j=1}^{n} X_j \xrightarrow{\text{a.s.}} 0$.

10. Let $\{X_j\}$ be a sequence of symmetric i.i.d.r.v.'s with finite fourth moment. Find the limit distribution of $\{(U_n, V_n)'\}$, where $U_n := n^{-1/2} \sum_{j=1}^n (X_j - \mu)$, $V_n := n^{-1/2} \sum_{j=1}^n ((X_j - \bar{X})^2 - \sigma)$, $\bar{X} := \frac{1}{n} \sum_{j=1}^n X_j$, $\mu := E[X_1]$ and $\sigma^2 := \operatorname{Var}(X_1)$.