Manual for SOA Exam FM/CAS Exam 2.

 Chapter 2. Cashflows. Section 2.3. Yield rates.(c)2009. Miguel A. Arcones. All rights reserved.

Extract from:
"Arcones' Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 2009 Edition", available at http://www.actexmadriver.com/

Yield of return

Suppose that the future value at time t of the cashflow:

Investments	V_{0}	C_{1}	C_{2}	\cdots	C_{n}
Time	0	t_{1}	t_{2}	\cdots	t_{n}

is FV. Then, the rate of return i of the investment satisfies the equation,

$$
F V=V_{0} \nu^{-t}+\sum_{j=1}^{n} C_{j} \nu^{t_{j}-t}=V_{0}(1+i)^{t}+\sum_{j=1}^{n} C_{j}(1+i)^{t-t_{j}}
$$

The rate of return $i, i>-1$, solving this equation is called the yield rate of return or internal rate of return. This equation can have either no solutions, or one solution, or several solutions. We are interested in values of i with $i>-1$. If $i<-1$, then $(1+i)^{n}>0$ is n is even and $(1+i)^{n}<0$ is n is odd. Values of i with $i \leq-1$ do not make any sense.

Example 1

Suppose that John invest \$3000 in a business. One year later, John sells half of this business to a partner for \$6000. Two years after the beginning, the business is in red and John has to pay $\$ 4000$ to close this business. What is the rate of interest John's got in his investment?

Example 1

Suppose that John invest $\$ 3000$ in a business. One year later, John sells half of this business to a partner for \$6000. Two years after the beginning, the business is in red and John has to pay $\$ 4000$ to close this business. What is the rate of interest John's got in his investment?
Solution: The cashflow is:

Inflow	-3000	6000	-4000
Time	0	1	2

Since John lost money, one expect that i is negative. However, there is no solution. We have to solve
$-3000(1+i)^{2}+6000(1+i)-4000=0$, or
$3(1+i)^{2}-6(1+i)+4=0$. Using the quadratic formula,

$$
1+i=\frac{6 \pm \sqrt{6^{2}-4 \cdot 4 \cdot 3}}{2}=\frac{6 \pm \sqrt{-12}}{2}
$$

There is no solution.

Example 2

What is the yield rate on a transaction in which a person makes payments of $\$ 100$ immediately and $\$ 100$ at the end of two years, in exchange for a payment of $\$ 201$ at the end of one year? Find all possible solutions.

Example 2

What is the yield rate on a transaction in which a person makes payments of $\$ 100$ immediately and $\$ 100$ at the end of two years, in exchange for a payment of $\$ 201$ at the end of one year? Find all possible solutions.
Solution: The cashflow is:

Inflow	-100	201	-100
Time	0	1	2

We have to solve $-100+201(1+i)^{-1}-100(1+i)^{-2}=0$, or $100(1+i)^{2}-201(1+i)^{1}+100=0$. Using the quadratic formula,

$$
1+i=\frac{201 \pm \sqrt{201^{2}-4 \cdot 100 \cdot 100}}{200}=\frac{201 \pm \sqrt{201}}{200} .
$$

The two solutions are $i=10.5124922 \%$ and $i=-9.512492197 \%$.

Since the internal rate of return could either do not exist or have several solutions, it is not a good indication of the performance of general investment strategy. However there exists a unique rate of return i with $i>-1$ if either all outflows happen before all the inflows, or all inflows happen before all the outflows.

Suppose that you an investment strategy consisting of investing (positive) payments of C_{1}, \ldots, C_{m} at times $t_{1}<\cdots<t_{m}$. At times $s_{1}<\cdots<s_{n}$, we get respective (positive) returns P_{1}, \ldots, P_{n}, where $s_{1}>t_{m}$. The cashflow is

Inflows	$-C_{1}$	$-C_{2}$	\cdots	$-C_{m}$	P_{1}	P_{2}	\cdots	P_{n}
Time	t_{1}	t_{2}	\cdots	t_{m}	s_{1}	s_{2}	\cdots	s_{n}

In this case, there exists a unique solution to the equation

$$
\sum_{k=1}^{n} P_{k}(1+i)^{-s_{k}}-\sum_{j=1}^{m} C_{j}(1+i)^{-t_{j}}=0, i>-1
$$

Besides,

- $\sum_{k=1}^{n} P_{k}>\sum_{j=1}^{m} C_{j}$, then $i>0$.
- $\sum_{k=1}^{n} P_{k}<\sum_{j=1}^{m} C_{j}$, then $i<0$.
- $\sum_{k=1}^{n} P_{k}=\sum_{j=1}^{m} C_{j}$, then $i=0$.

Example 3

As the budgeting officer for Road Kill Motors Inc., you are evaluating the purchase of a new car factory. The cost of the factory is $\$ 4$ million today. It will provide inflows of $\$ 1.4$ million at the end of each of the first three years. Find the effective rate of interest which this investment will provide your company.

Example 3

As the budgeting officer for Road Kill Motors Inc., you are evaluating the purchase of a new car factory. The cost of the factory is $\$ 4$ million today. It will provide inflows of $\$ 1.4$ million at the end of each of the first three years. Find the effective rate of interest which this investment will provide your company.
Solution: The cashflow is

Contributions	-4	1.4	1.4	1.4
Time	0	1	2	3

An equation of value for the cashflow is

$$
0=4-(1.4)(1+i)^{-1}-(1.4)(1+i)^{-2}-(1.4)(1+i)^{-3} .
$$

In the TI-BA-II-Plus calculator, we can find i, by going to CF , and enter $\mathrm{CFo}=-4, \mathrm{C} 01=1.4, \mathrm{~F} 01=3,2 \mathrm{nd}, \mathrm{QUIT}$. We can move between different entries using the arrows \downarrow and \uparrow. Press IRR CPT and get $I R R=i=2.47974 \%$.

Example 4

Find the internal rate of return such that a payment of 400 at the present, 200 at the end of one year, and 300 at the end of two years, accumulate to 1000 at the end of 3 years.

Example 4
Find the internal rate of return such that a payment of 400 at the present, 200 at the end of one year, and 300 at the end of two years, accumulate to 1000 at the end of 3 years.
Solution: The cashflow is

Contributions	-400	-200	-300	1000
Time	0	1	2	3

An equation of value for the cashflow is

$$
0=-400(1+i)^{3}-200(1+i)^{2}-300(1+i)+1000
$$

In the TI-BA-II-Plus calculator, we can find i, by going to CF , and enter $\mathrm{CFo}=-400, \mathrm{C} 01=-200, \mathrm{~F} 01=1, \mathrm{C} 02=-300$, $\mathrm{F} 02=1, \mathrm{C} 03=1000, \mathrm{~F} 03=1$, 2nd, QUIT. We can move between different entries using the arrows \downarrow and \uparrow. Press IRR CPT and get $I R R=5.0709 \%$.

Example 5

An investment fund is established at time 0 with a deposit of $\$ 5000$. $\$ 6000$ is added at the end of 6 months. The fund value, including interest, is $\$ 11500$ at the end of 1 year. Find the internal rate of return as a annual nominal rate convertible semiannually.

Example 5

An investment fund is established at time 0 with a deposit of $\$ 5000$. \$6000 is added at the end of 6 months. The fund value, including interest, is $\$ 11500$ at the end of 1 year. Find the internal rate of return as a annual nominal rate convertible semiannually. Solution: The cashflow is

Investments	5000	6000	11500
Time (in half years)	0	1	2

An equation of value for the cashflow is

$$
0=(5000)+(6000)\left(1+\frac{i^{(2)}}{2}\right)^{-1}-(11500)\left(1+\frac{i^{(2)}}{2}\right)^{-2} .
$$

In the TI-BA-II-Plus calculator, press CF , and enter
$C F O=5000, \mathrm{C} 01=6000, \mathrm{~F} 01=1, \mathrm{C} 02=-11500, \mathrm{~F} 02=1$.
Press IRR, CPT and get $I R R=\frac{i^{(2)}}{2}=3.095064303 \%$ and
$i^{(2)}=6.190128606 \%$. The six-month effective interest rate is $\frac{i^{(2)}}{2}$.

Example 6

An investment fund is established at time 0 with a deposit of $\$ 5000$. $\$ 6000$ is added at the end of 6 months. The fund value, including interest, is $\$ 11500$ at the end of 1 year. Find the internal rate of return as a annual nominal rate convertible monthly.

Example 6

An investment fund is established at time 0 with a deposit of $\$ 5000$. $\$ 6000$ is added at the end of 6 months. The fund value, including interest, is $\$ 11500$ at the end of 1 year. Find the internal rate of return as a annual nominal rate convertible monthly.
Solution: The cashflow is

Investments	5000	6000	11500
Time (in months)	0	6	12

An equation of value for the cashflow is

$$
0=(5000)+(6000)\left(1+\frac{i^{(12)}}{12}\right)^{-6}-(11500)\left(1+\frac{i^{(12)}}{12}\right)^{-12} .
$$

In the TI-BA-II-Plus calculator, press CF , and enter CFo $=5000, \mathrm{C} 01=0, \mathrm{~F} 01=5, \mathrm{C} 02=6000, \mathrm{~F} 02=1, \mathrm{C} 03=0$, F03 $=5, \mathrm{C} 04=-11500, \mathrm{~F} 04=1$. Press IRR, CPT and get $I R R=\frac{i^{(12)}}{12}=0.509314804 \%$ and $i^{(12)}=6.111777648 \%$.

