Manual for SOA Exam FM/CAS Exam 2. Chapter 2. Cashflows. Section 2.4. Dollar–weighted and time–weighted rates of return.

©2009. Miguel A. Arcones. All rights reserved.

Extract from: "Arcones' Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 2009 Edition", available at http://www.actexmadriver.com/

1/9

Dollar-weighted and time-weighted rates of return

If the cashflow

Investments
$$V_0$$
 C_1 C_2 \cdots C_n Time0 t_1 t_2 \cdots t_n

has future value FV at time t, then its equation of value is

$$FV = V_0(1+i)^t + \sum_{j=1}^n C_j(1+i)^{t-t_j}.$$

Using the first order Taylor expansion 1 + it of $(1 + i)^t$, the previous equation of value is approximately,

$$FV = V_0(1+it) + \sum_{j=1}^n C_j(1+i(t-t_j)).$$
(1)

Observe Equation (1) represents the future value of the cashflow when simple interest is used.

The interest rate *i* which solves

$$FFV = V_0(1 + it) + \sum_{j=1}^n C_j(1 + i(t - t_j)).$$

is called the dollar weighted rate of return, which is

$$i = \frac{FV - V_0 - \sum_{j=1}^n C_j}{V_0 t + \sum_{j=1}^n (t - t_j) C_j}.$$
(2)

 V_0 can be interpreted as the initial balance in an account. C_j is the deposit at time t_j . FV is the final balance in the account at time t. Hence, $I = FV - V_0 - \sum_{j=1}^{n} C_j$ is the interest earned in the account. $V_0t + \sum_{j=1}^{n} (t - t_j)C_j$ is the sum of the deposits multiplied by the time which the deposits are in the account.

On January 1, 2000, the balance in account is \$25200. On April 1, 2000, \$500 are deposited in this account and on July 1, 2001, a withdraw of \$1000 is made. The balance in the account on October 1, 2001 is \$25900. What is the annual rate of interest in this account according with the dollar-weighted method?

On January 1, 2000, the balance in account is \$25200. On April 1, 2000, \$500 are deposited in this account and on July 1, 2001, a withdraw of \$1000 is made. The balance in the account on October 1, 2001 is \$25900. What is the annual rate of interest in this account according with the dollar-weighted method?

Solution: The cashflow

Investments	25200	500	-1000
Time in years	0	3/12	18/12

has a FV at time 21/12 of \$25900. So, the annual dollar–weighted rate of interest is

$$\frac{25900 - 25200 - 500 + 1000}{(25200)(21/12) + (500)(18/12) - 1000(3/12)}$$
$$=\frac{1200}{44100 + 750 - 250} = \frac{1200}{44600} = 2.6906\%$$

Suppose that we make investments in a fund over time and we know the outstanding balance before each deposit or withdrawal occurs. Let B_0 be the initial balance in the fund. Let B_j be the balance in the fund immediately before time t_j , for $1 \le j \le n$. Let W_j be the amount of each deposit or withdrawal at time t_j . $W_j > 0$ for deposits and $W_j < 0$ for withdrawal. In a table, we have:

Time	0	t_1	t_2	•••	t_{n-1}	tn
Balance before		B.	B.		R	R
depos./withdr.		D_1	D_2		D_{n-1}	D_n
Depos./Withdr.	_	W_1	W_2		W_{n-1}	—
Balance after	R.	$B_{\star} \perp M_{\star}$	$B_{a} \perp W_{a}$		$B \rightarrow W$	
depos./withdr.		$\mathcal{D}_1 + \mathcal{V}_1$	$D_2 = W_2$		$\nu_{n-1} \vdash \nu_{n-1}$	_

The time-weighted annual rate of return *i* is the solution of

$$(1+i)^{t_n} = \frac{B_1}{B_0} \cdot \frac{B_2}{B_1 + W_1} \cdot \frac{B_3}{B_2 + W_2} \cdots \frac{B_n}{B_{n-1} + W_{n-1}}.$$

In the *j*-th period of time, the balance of the fund has changed from $B_{j-1} + W_{j-1}$ to B_j . So, the interest factor rate in the *j*-th period of time is $1 + i_j = \frac{B_j}{B_{j-1} + W_{j-1}}$, where i_j is the effective rate of return in the period $[t_{j-1}, t_j]$. Observe that if the investment followed an annual effective rate of interest of *i*, the interest factor from time t_{j-1} to time t_j would be $(1 + i)^{t_j - t_{j-1}}$. Assuming that $1 + i_j = (1 + i)^{t_j - t_{j-1}}$, we get that

$$(1+i_1)(1+i_2)\cdots(1+i_n) = (1+i)^{t_1}(1+i)^{t_2-t_1}\cdots(1+i)^{t_n-t_{n-1}} = (1+i)^{t_n}.$$

The time-weighted annual rate of return *i* is the solution of

$$(1+i)^{t_n} = \frac{B_1}{B_0} \cdot \frac{B_2}{B_1 + W_1} \cdot \frac{B_3}{B_2 + W_2} \cdots \frac{B_n}{B_{n-1} + W_{n-1}}.$$

Usually, the account balance does not follow compound interest with a fixed effective rate *i*. Usually, $1 + i_j$ and $(1 + i)^{t_j - t_{j-1}}$ may be different.

For an investment account, you are given:

Date	11/1/04	3/1/05	8/1/05	2/1/06	4/1/06
Account Balance (before deposit or withdrawal)	14,516	14,547	18,351	16,969	18,542
Deposit	_	3,000	-	2500	-
Withdrawal	-	_	2,000	-	-

Calculate the annual effective yield rate by the time weighted method.

For an investment account, you are given:

Date	11/1/04	3/1/05	8/1/05	2/1/06	4/1/06
Account Balance (before deposit or withdrawal)	14,516	14,547	18,351	16,969	18,542
Deposit	_	3,000	-	2500	-
Withdrawal	-	-	2,000	_	-

Calculate the annual effective yield rate by the time weighted method.

Solution: The annual effective yield rate *i* by the time weighted method satisfies

$$(1+i)^{17/12} = \frac{B_1}{B_0} \cdot \frac{B_2}{B_1 + W_1} \cdot \frac{B_3}{B_2 + W_2} \cdot s \frac{B_n}{B_{n-1} + W_{n-1}}$$

= $\frac{14547}{14516} \frac{18351}{14547 + 3000} \frac{16969}{18351 - 2000} \frac{18542}{16969 + 2500} = 1.035877$

and i = 2.5193371%.

© 2009. Miguel A. Arcones. All rights reserved. Ma