Manual for SOA Exam FM/CAS Exam 2. Chapter 3. Annuities. Section 3.1. Geometric series.

(c)2009. Miguel A. Arcones. All rights reserved.

Extract from:
"Arcones' Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 2009 Edition", available at http://www.actexmadriver.com/

We use the summation notation $\sum_{i=m}^{n} x_{i}$ to mean

$$
x_{m}+x_{m+1}+\cdots+x_{n-1}+x_{n}
$$

Usually arithmetic rules hold. In particular:

- $\sum_{i=m}^{n}\left(x_{i}+y_{i}\right)=\sum_{i=m}^{n} x_{i}+\sum_{i=m}^{n} y_{i}$

We use the summation notation $\sum_{i=m}^{n} x_{i}$ to mean

$$
x_{m}+x_{m+1}+\cdots+x_{n-1}+x_{n}
$$

Usually arithmetic rules hold. In particular:

- $\sum_{i=m}^{n}\left(x_{i}+y_{i}\right)=\sum_{i=m}^{n} x_{i}+\sum_{i=m}^{n} y_{i}$
- $\sum_{i=m}^{n} a x_{i}=a \sum_{i=m}^{n} x_{i}$.

We use the summation notation $\sum_{i=m}^{n} x_{i}$ to mean

$$
x_{m}+x_{m+1}+\cdots+x_{n-1}+x_{n}
$$

Usually arithmetic rules hold. In particular:

- $\sum_{i=m}^{n}\left(x_{i}+y_{i}\right)=\sum_{i=m}^{n} x_{i}+\sum_{i=m}^{n} y_{i}$
- $\sum_{i=m}^{n} a x_{i}=a \sum_{i=m}^{n} x_{i}$.
- If $m \leq k \leq n$,

$$
\sum_{i=m}^{n} x_{i}=\sum_{i=m}^{k} x_{i}+\sum_{i=k+1}^{n} x_{i} .
$$

We use the summation notation $\sum_{i=m}^{n} x_{i}$ to mean

$$
x_{m}+x_{m+1}+\cdots+x_{n-1}+x_{n}
$$

Usually arithmetic rules hold. In particular:

- $\sum_{i=m}^{n}\left(x_{i}+y_{i}\right)=\sum_{i=m}^{n} x_{i}+\sum_{i=m}^{n} y_{i}$
- $\sum_{i=m}^{n} a x_{i}=a \sum_{i=m}^{n} x_{i}$.
- If $m \leq k \leq n$,

$$
\sum_{i=m}^{n} x_{i}=\sum_{i=m}^{k} x_{i}+\sum_{i=k+1}^{n} x_{i}
$$

- $\sum_{i=m}^{n} 1=n-m+1$.

Definition 1

The sequence of real numbers ${ }_{n=0}^{\infty}=\{a+n d\}_{n=0}^{\infty}$ is called an arithmetic sequence.

Definition 1

The sequence of real numbers ${ }_{n=0}^{\infty}=\{a+n d\}_{n=0}^{\infty}$ is called an arithmetic sequence.

The sequence $\left\{x_{n}\right\}_{n=0}^{\infty}=\{a+n d\}_{n=0}^{\infty}$ satisfies that for each $n \geq 1$, $x_{n-1}+d=x_{n}$. Notice that

$$
x_{n-1}+d=a+(n-1) d+d=a+n d=x_{n} .
$$

Definition 1

The sequence of real numbers ${ }_{n=0}^{\infty}=\{a+n d\}_{n=0}^{\infty}$ is called an arithmetic sequence.
The sequence $\left\{x_{n}\right\}_{n=0}^{\infty}=\{a+n d\}_{n=0}^{\infty}$ satisfies that for each $n \geq 1$, $x_{n-1}+d=x_{n}$. Notice that

$$
x_{n-1}+d=a+(n-1) d+d=a+n d=x_{n} .
$$

Theorem 1
If a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ of real numbers satisfies $x_{n}=x_{n-1}+d$, for each $n \geq 1$, then $x_{n}=x_{0}+n d$ for each $n \geq 1$.

Definition 1

The sequence of real numbers ${ }_{n=0}^{\infty}=\{a+n d\}_{n=0}^{\infty}$ is called an arithmetic sequence.
The sequence $\left\{x_{n}\right\}_{n=0}^{\infty}=\{a+n d\}_{n=0}^{\infty}$ satisfies that for each $n \geq 1$, $x_{n-1}+d=x_{n}$. Notice that

$$
x_{n-1}+d=a+(n-1) d+d=a+n d=x_{n}
$$

Theorem 1

If a sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ of real numbers satisfies $x_{n}=x_{n-1}+d$, for each $n \geq 1$, then $x_{n}=x_{0}+n d$ for each $n \geq 1$.

Proof.

The proof is by induction on n. The case $n=0$ is obvious. Assume that the case n holds. Then,
$x_{n+1}=x_{n}+d=x_{0}+n d+d=x_{0}+(n+1) d$.

Theorem 2
$\sum_{j=1}^{n} j=\frac{n(n+1)}{2}$.

Theorem 2
$\sum_{j=1}^{n} j=\frac{n(n+1)}{2}$.

Proof.

$$
\begin{aligned}
& 2 \sum_{j=1}^{n} j=(1+2+\cdots+(n-1)+n)+(1+2+\cdots+(n-1)+n) \\
= & (1+2+\cdots+(n-1)+n)+(n+(n-1)+\cdots+2+1) \\
= & (1+n)+(2+n-1)+(3+n-2) \cdots+(n+1) \\
= & (n+1)+(n+1)+(n+1) \cdots+(n+1)=n(n+1) .
\end{aligned}
$$

Theorem 2
$\sum_{j=1}^{n} j=\frac{n(n+1)}{2}$.

Proof.

$$
\begin{aligned}
& 2 \sum_{j=1}^{n} j=(1+2+\cdots+(n-1)+n)+(1+2+\cdots+(n-1)+n) \\
= & (1+2+\cdots+(n-1)+n)+(n+(n-1)+\cdots+2+1) \\
= & (1+n)+(2+n-1)+(3+n-2) \cdots+(n+1) \\
= & (n+1)+(n+1)+(n+1) \cdots+(n+1)=n(n+1) .
\end{aligned}
$$

Previous theorem can be proved by induction.

Theorem 2
$\sum_{j=1}^{n} j=\frac{n(n+1)}{2}$.

Proof.

$$
\begin{aligned}
& 2 \sum_{j=1}^{n} j=(1+2+\cdots+(n-1)+n)+(1+2+\cdots+(n-1)+n) \\
= & (1+2+\cdots+(n-1)+n)+(n+(n-1)+\cdots+2+1) \\
= & (1+n)+(2+n-1)+(3+n-2) \cdots+(n+1) \\
= & (n+1)+(n+1)+(n+1) \cdots+(n+1)=n(n+1) .
\end{aligned}
$$

Previous theorem can be proved by induction. Note that in the summation $\sum_{j=1}^{n} j$, there are n numbers and the average of these numbers is $\frac{n+1}{2}$. Hence, $\sum_{j=1}^{n} j=\frac{n(n+1)}{2}$.

For an arithmetic sequence,

$$
\sum_{j=0}^{n}(a+j d)=\sum_{j=0}^{n} a+d \sum_{j=0}^{n} j=(n+1) a+d \frac{n(n+1)}{2} .
$$

Example 1

Find $\sum_{k=10}^{100} k$.

Example 1

Find $\sum_{k=10}^{100} k$.

Solution 1:

$\sum_{k=10}^{100} k=\sum_{k=1}^{100} k-\sum_{k=1}^{9} k=\frac{(100)(101)}{2}-\frac{(9)(10)}{2}=5005$.

Example 1

Find $\sum_{k=10}^{100} k$.
Solution 1:
$\sum_{k=10}^{100} k=\sum_{k=1}^{100} k-\sum_{k=1}^{9} k=\frac{(100)(101)}{2}-\frac{(9)(10)}{2}=5005$.
Solution 2: By the change of variables $k=j+9$,

$$
\sum_{k=10}^{100} k=\sum_{j=1}^{91}(j+9)=\frac{(91)(92)}{2}+(9)(91)=5005
$$

Notice that if $k=10$, then $j=9$; and if $k=100$, then $j=91$.

Definition 2

The sequence $\left\{a r^{n}\right\}_{n=0}^{\infty}$ is called a geometric sequence.

Definition 2

The sequence $\left\{a r^{n}\right\}_{n=0}^{\infty}$ is called a geometric sequence.
The geometric sequence $\left\{a r^{n}\right\}_{n=0}^{\infty}$ satisfies that for each $n \geq 1$, $r x_{n-1}=r a r^{n-1}=a r^{n}=x_{n}$, where $x_{n}=a r^{n}$.

Theorem 3
If a sequence satisfies $x_{n}=r x_{n-1}$, for each $n \geq 1$, then $x_{n}=x_{0} r^{n}$ for each $n \geq 1$.

Theorem 3
If a sequence satisfies $x_{n}=r x_{n-1}$, for each $n \geq 1$, then $x_{n}=x_{0} r^{n}$ for each $n \geq 1$.

Proof.
The proof is by induction on n. The case $n=0$ is obvious. Assume that the case n holds. Then,
$x_{n+1}=r x_{n}=r x_{0} r^{n}=x_{0} r^{n+1}=x_{n+1}$.

Theorem 4
For any $r \in \mathbb{R}$,

$$
r^{n+1}-1=(r-1) \sum_{j=0}^{n} r^{j}
$$

Proof.

$$
\begin{aligned}
& \sum_{j=0}^{n} r^{j}(r-1)=\left(1+r+r^{2}+\cdots+r^{n}\right)(r-1) \\
& =\left(r+r^{2}+\cdots+r^{n+1}\right)-\left(1+r+r^{2}+\cdots+r^{n}\right)=r^{n+1}-1 .
\end{aligned}
$$

In particular, we that

$$
\begin{aligned}
& \left(x^{2}-1\right)=(x-1)(1+x), \\
& \left(x^{3}-1\right)=(x-1)\left(1+x+x^{2}\right), \\
& \left(x^{4}-1\right)=(x-1)\left(1+x+x^{2}+x^{3}\right), \\
& \left(x^{5}-1\right)=(x-1)\left(1+x+x^{2}+x^{3}+x^{4}\right)
\end{aligned}
$$

Corollary 1

(i) If $r \neq 1, \sum_{j=0}^{n} r^{j}=\frac{r^{n+1}-1}{r-1}$.
(ii) If $r=1, \sum_{j=0}^{n} r^{j}=n+1$.

Corollary 1

(i) If $r \neq 1, \sum_{j=0}^{n} r^{j}=\frac{r^{n+1}-1}{r-1}$.
(ii) If $r=1, \sum_{j=0}^{n} r^{j}=n+1$.

Proof.
(i) If $r \neq 1$, from $r^{n+1}-1=(r-1) \sum_{j=0}^{n} r^{j}$, we get that

$$
\sum_{j=0}^{n} r^{j}=\frac{r^{n+1}-1}{r-1}
$$

(ii) If $r=1$,

$$
\sum_{j=0}^{n} r^{j}=\sum_{j=0}^{n} 1=n+1
$$

Example 2

Find $\sum_{k=5}^{20} 2^{k}$.

Example 2

Find $\sum_{k=5}^{20} 2^{k}$.

Solution:

$\sum_{k=5}^{20} 2^{k}=\sum_{k=0}^{20} 2^{k}-\sum_{k=0}^{4} 2^{k}=\frac{2^{21}-1}{2-1}-\frac{2^{5}-1}{2-1}=2^{21}-2^{5}=2097120$.

We also have that for $1 \leq m \leq n$ and $r \neq 1$,

$$
\sum_{j=m}^{n} r^{j}=\sum_{j=0}^{n} r^{j}-\sum_{j=0}^{m-1} r^{j}=\frac{r^{n+1}-1}{r-1}-\frac{r^{m}-1}{r-1}=\frac{r^{n+1}-r^{m}}{r-1}
$$

We also have that for $1 \leq m \leq n$ and $r \neq 1$,

$$
\sum_{j=m}^{n} r^{j}=\sum_{j=0}^{n} r^{j}-\sum_{j=0}^{m-1} r^{j}=\frac{r^{n+1}-1}{r-1}-\frac{r^{m}-1}{r-1}=\frac{r^{n+1}-r^{m}}{r-1}
$$

Example 3
Find $\sum_{k=5}^{20} 2^{k}$.

We also have that for $1 \leq m \leq n$ and $r \neq 1$,

$$
\sum_{j=m}^{n} r^{j}=\sum_{j=0}^{n} r^{j}-\sum_{j=0}^{m-1} r^{j}=\frac{r^{n+1}-1}{r-1}-\frac{r^{m}-1}{r-1}=\frac{r^{n+1}-r^{m}}{r-1}
$$

Example 3
Find $\sum_{k=5}^{20} 2^{k}$.
Solution: $\sum_{k=5}^{20} 2^{k}=\frac{2^{21}-2^{5}}{2-1}=2^{21}-2^{5}=2097120$.

Theorem 5
For $|r|<1, \sum_{j=0}^{\infty} r^{j}=\frac{1}{1-r}$.

Theorem 5
For $|r|<1, \sum_{j=0}^{\infty} r^{j}=\frac{1}{1-r}$.
Proof.
If $|r|<1$, then $\ln (|r|)<0$ and $\left|r^{n+1}\right| \leq|r|^{n+1}=e^{(n+1) \ln (|r|)} \rightarrow 0$, as $n \rightarrow \infty$. Hence,

$$
\sum_{j=0}^{\infty} r^{j}=\lim _{n \rightarrow \infty} \sum_{j=0}^{n} r^{j}=\lim _{n \rightarrow \infty} \frac{r^{n+1}-1}{r-1}=\frac{1}{1-r}
$$

Corollary 2

For $|r|<1$,

$$
\sum_{j=n}^{\infty} r^{j}=\frac{r^{n}}{1-r}
$$

Corollary 2

For $|r|<1$,

$$
\sum_{j=n}^{\infty} r^{j}=\frac{r^{n}}{1-r}
$$

Proof.

By the change of variables $j=k+n$,

$$
\sum_{j=n}^{\infty} r^{j}=\sum_{k=0}^{\infty} r^{k+n}=r^{n} \sum_{k=0}^{\infty} r^{k}=\frac{r^{n}}{1-r}
$$

Example 4

Find $\sum_{k=9}^{\infty} 3^{-k}$.

Example 4

Find $\sum_{k=9}^{\infty} 3^{-k}$.

Solution:

$$
\sum_{k=9}^{\infty} 3^{-k}=\frac{3^{-9}}{1-(1 / 3)}=0.0000762079
$$

Theorem 6
For $r \neq 1$,

$$
\sum_{j=1}^{n} j r^{j}=\frac{n r^{n+2}-(n+1) r^{n+1}+r}{(r-1)^{2}}
$$

Theorem 6

For $r \neq 1$,

$$
\sum_{j=1}^{n} j r^{j}=\frac{n r^{n+2}-(n+1) r^{n+1}+r}{(r-1)^{2}}
$$

Proof.

Taking derivatives with respect to r in the inequality
$\sum_{j=0}^{n} r^{j}=\frac{r^{n+1}-1}{r-1}$, we get that

$$
\sum_{j=1}^{n} j r^{j-1}=\frac{(n+1) r^{n}(r-1)-\left(r^{n+1}-1\right)}{(r-1)^{2}}=\frac{n r^{n+1}-(n+1) r^{n}+1}{(r-1)^{2}}
$$

Corollary 3

For $|r|<1, \sum_{j=1}^{\infty} j r^{j}=\frac{r}{(r-1)^{2}}$.

Corollary 3

For $|r|<1, \sum_{j=1}^{\infty} j r^{j}=\frac{r}{(r-1)^{2}}$.
Proof.
If $|r|<1$, then
$\sum_{j=1}^{\infty} j r^{j}=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} j r^{j}=\lim _{n \rightarrow \infty} \frac{n r^{n+2}-(n+1) r^{n+1}+r}{(r-1)^{2}}=\frac{r}{(r-1)^{2}}$.

Example 5

Find $\sum_{k=1}^{\infty} k 4^{-k}$.

Example 5

Find $\sum_{k=1}^{\infty} k 4^{-k}$.

Solution:

$$
\sum_{k=1}^{\infty} k 4^{-k}=\frac{4^{-1}}{\left(1-4^{-1}\right)^{2}}=\frac{4}{9}=0.4444444444
$$

